3,416 research outputs found

    Vegetation hot spot signatures from synergy of DSCOVR EPIC, Terra MISR, MODIS and geostationary sensors

    Full text link
    It has been widely recognized that the hotspot region in Bidirectional Reflectance Factors (BRF) of vegetated surfaces represents the most information-rich directions in the directional distribution of canopy reflected radiation. The hotspot effect is strongly correlated with canopy architectural parameters such as foliage size and shape, crown geometry and within-crown foliage arrangement, leaf area index and its sunlit fraction. Here we present a new methodology that synergistically incorporate features of Terra Multi-angle Imaging SpectroRadiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS, Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR), Advanced Baseline Imager (ABI) carried by the Geostationary Operational Environmental Satellites (GOES) R series and Advanced Himawari Imager (AHI) observation geometries and results in a new type of hot spot signatures that maximally sensitive to vegetation changes. We discuss a physical basis for the synergy of multi-sensor data. Five areas that include Amazonian forests (evergreen broadleaf forest), Mississippi forest (deciduous forest), Heihe River Basin (crops), Genhe forest (coniferous forest) and Australia central grassland were selected to generate time series of hot spot signatures of different land cover types for the period of concurrent Terra/Aqua/DSCOVR and geostationary observations. We demonstrate value of the hot spot signatures for monitoring changes and biophysical processes in vegetated land through analyses of variations in magnitude and shape of angular distribution of canopy reflected radiation and the rigorous use of radiative transfer theory.Accepted manuscrip

    Outlier Detection Using Nonconvex Penalized Regression

    Full text link
    This paper studies the outlier detection problem from the point of view of penalized regressions. Our regression model adds one mean shift parameter for each of the nn data points. We then apply a regularization favoring a sparse vector of mean shift parameters. The usual L1L_1 penalty yields a convex criterion, but we find that it fails to deliver a robust estimator. The L1L_1 penalty corresponds to soft thresholding. We introduce a thresholding (denoted by Θ\Theta) based iterative procedure for outlier detection (Θ\Theta-IPOD). A version based on hard thresholding correctly identifies outliers on some hard test problems. We find that Θ\Theta-IPOD is much faster than iteratively reweighted least squares for large data because each iteration costs at most O(np)O(np) (and sometimes much less) avoiding an O(np2)O(np^2) least squares estimate. We describe the connection between Θ\Theta-IPOD and MM-estimators. Our proposed method has one tuning parameter with which to both identify outliers and estimate regression coefficients. A data-dependent choice can be made based on BIC. The tuned Θ\Theta-IPOD shows outstanding performance in identifying outliers in various situations in comparison to other existing approaches. This methodology extends to high-dimensional modeling with pnp\gg n, if both the coefficient vector and the outlier pattern are sparse

    Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites II: Microbial diversity and C isotopes

    Get PDF
    An unprecedented period of phosphogenesis, along with massive deposition of black shales, major perturbations in the global carbon cycle and the rise of atmospheric oxygen, occurred in the terminal Proterozoic in the aftermath of the Marinoan glaciation. Although causal links between these processes have been postulated, evidence remains challenging. Correlated in situ micro-analyses of granular phosphorites from the Ediacaran Doushantuo Formation in Yichang, South China, suggested that cyanobacteria and associated extracellular polymeric substances (EPS) might have promoted aggregated granule growth and subsequent phosphatization (She et al., 2013). Here, we present new paleontological data for the Doushantuo phosphorites from Yichang, which, combined with Raman microspectroscopy and carbon isotope data, further document links between the biology of cyanobacteria and phosphogenesis. Mapping of microfossils in thin section shows that most phosphatic granules contain microfossils that are dominated by colonies of Myxococcoides, along with several filamentous genera generally considered to represent cyanobacterial sheaths. In addition, the phosphorites and associated rocks have δ13Corg values in the range of −26.0 to −29.7‰ VPDB, consistent with photoautotrophic carbon fixation with the Rubisco enzyme. Close association of phosphorites with the Marinoan tillites in stratigraphic level supports a genetic link between deglaciation and phosphogenesis, at least for the Doushantuo occurrence. Our new data suggest that major cyanobacterial blooms probably took place in the terminal Proterozoic, which might have resulted in rapid scavenging of bioavailable phosphorus and massive accumulations of organic matter (OM). Within a redox-stratified intra-shelf basin, the OM-bound phosphorus could have liberated by microbial sulfate reduction and other anaerobic metabolisms and subsequently concentrated by Fe-redox pumping below the chemocline. Upwelling of the bottom waters or upward fluctuation of the chemocline might have brought P-enriched waters to the photic zone, where it was again scavenged by cyanobacteria through their EPS to be subsequently precipitated as francolite. The feedbacks between enhanced continental weathering, cyanobacterial blooms, carbon burial, and accelerated phosphorus cycle thus controlled the marine biogeochemical changes, which led to further oxygenation of the atmosphere and oceans, ultimately paving the way for the rise of metazoans

    On the Mass to Charge Ratio of Neutron Cores and Heavy Nuclei

    Full text link
    We determine theoretically the relation between the total number of protons NpN_{p} and the mass number AA (the charge to mass ratio) of nuclei and neutron cores with the model recently proposed by Ruffini et al. (2007) and we compare it with other NpN_p versus AA relations: the empirical one, related to the Periodic Table, and the semi-empirical relation, obtained by minimizing the Weizs\"{a}cker mass formula. We find that there is a very good agreement between all the relations for values of AA typical of nuclei, with differences of the order of per cent. Our relation and the semi-empirical one are in agreement up to A104A\sim 10^4; for higher values, we find that the two relations differ. We interprete the different behaviour of our theoretical relation as a result of the penetration of electrons (initially confined in an external shell) inside the core, that becomes more and more important by increasing AA; these effects are not taken into account in the semi-empirical mass-formula.Comment: Some misprints of the published version corrected (value of nuclear density and eq. 7). Talk given at the 4th Italian-Sino Workshop, July 20-30 (2007), Pescara (Italy

    Universal statistics of non-linear energy transfer in turbulent models

    Full text link
    A class of shell models for turbulent energy transfer at varying the inter-shell separation, λ\lambda, is investigated. Intermittent corrections in the continuous limit of infinitely close shells (λ1\lambda \rightarrow 1) have been measured. Although the model becomes, in this limit, non-intermittent, we found universal aspects of the velocity statistics which can be interpreted in the framework of log-poisson distributions, as proposed by She and Waymire (1995, Phys. Rev. Lett. 74, 262). We suggest that non-universal aspects of intermittency can be adsorbed in the parameters describing statistics and properties of the most singular structure. On the other hand, universal aspects can be found by looking at corrections to the monofractal scaling of the most singular structure. Connections with similar results reported in other shell models investigations and in real turbulent flows are discussed.Comment: 4 pages, 2 figures available upon request to [email protected]

    Supersonic turbulence and structure of interstellar molecular clouds

    Get PDF
    The interstellar medium (ISM) provides a unique laboratory for highly supersonic, driven hydrodynamics turbulence. We present a theory of such turbulence, confirm it by numerical simulations, and use the results to explain observational properties of interstellar molecular clouds, the regions where stars are born.Comment: 5 pages, 3 figures include

    Energy-Momentum Tensor for the Electromagnetic Field in a Dielectric

    Full text link
    The total momentum of a thermodynamically closed system is unique, as is the total energy. Nevertheless, there is continuing confusion concerning the correct form of the momentum and the energy-momentum tensor for an electromagnetic field interacting with a linear dielectric medium. Here we investigate the energy and momentum in a closed system composed of a propagating electromagnetic field and a negligibly reflecting dielectric. The Gordon momentum is easily identified as the total momentum by the fact that it is, by virtue of being invariant in time, conserved. We construct continuity equations for the energy and the Gordon momentum and use the continuity equations to construct an array that has the properties of a traceless, diagonally symmetric energy-momentum tensor. Then the century-old Abraham-Minkowski momentum controversy can be viewed as a consequence of attempting to construct an energy-momentum tensor from continuity equations that contain densities that correspond to nonconserved quantities.Comment: added publication informatio
    corecore