4,945 research outputs found

    Assessment of pulmonary edema: principles and practice

    Get PDF
    Pulmonary edema increasingly is recognized as a perioperative complication affecting outcome. Several risk factors have been identified, including those of cardiogenic origin, such as heart failure or excessive fluid administration, and those related to increased pulmonary capillary permeability secondary to inflammatory mediators. Effective treatment requires prompt diagnosis and early intervention. Consequently, over the past 2 centuries a concentrated effort to develop clinical tools to rapidly diagnose pulmonary edema and track response to treatment has occurred. The ideal properties of such a tool would include high sensitivity and specificity, easy availability, and the ability to diagnose early accumulation of lung water before the development of the full clinical presentation. In addition, clinicians highly value the ability to precisely quantify extravascular lung water accumulation and differentiate hydrostatic from high permeability etiologies of pulmonary edema. In this review, advances in understanding the physiology of extravascular lung water accumulation in health and in disease and the various mechanisms that protect against the development of pulmonary edema under physiologic conditions are discussed. In addition, the various bedside modalities available to diagnose early accumulation of extravascular lung water and pulmonary edema, including chest auscultation, chest roentgenography, lung ultrasonography, and transpulmonary thermodilution, are examined. Furthermore, advantages and limitations of these methods for the operating room and intensive care unit that are critical for proper modality selection in each individual case are explored

    Inclusive Photoproduction of η\eta Mesons on Nuclei and the in-medium properties of the S11_{11} Resonance

    Full text link
    A relativistic non-local model for the inclusive photoproduction of η\eta mesons from complex nuclei is introduced. The model is based on the dominance of the S11_{11}(1535) resonance. We compare the results of our calculations with the available data on inclusive cross sections for the nuclei C, Al and Cu. Assuming the resonance propagates freely in the nuclear medium, we find that the calculated angular distribution and energy dependence of the cross sections reproduce the data in a reasonable fashion. The present non-local model allows the inclusion of density dependent mass and width in the calculations. Including these in the calculations reveals that the presently available data do not show clear preference for the inclusion of such modifications of the properties of the S11_{11}(1535) in the nuclear medium.Comment: 15 pages, 8 figure

    Finite element analysis of gradient coil deformation and vibration in NMR microscopy

    Get PDF
    Resolution degradation due to gradient coil deformation and vibration in NMR microscopy is investigated using finite element analysis. From the analysis, deformations due to the Lorentz force can be as large as 1-10 μm depending on the gradient strength and coil frame material. Thus, these deformations can be one of the major resolution limiting factors in NMR microscopy. Coil vibration, which depends on the input current waveform and resolution degradation due to time-variant deformation and time-invariant deformation are investigated by numerical simulations

    The Effect of Integrating Travel Time

    Full text link
    This contribution demonstrates the potential gain for the quality of results in a simulation of pedestrians when estimated remaining travel time is considered as a determining factor for the movement of simulated pedestrians. This is done twice: once for a force-based model and once for a cellular automata-based model. The results show that for the (degree of realism of) simulation results it is more relevant if estimated remaining travel time is considered or not than which modeling technique is chosen -- here force-based vs. cellular automata -- which normally is considered to be the most basic choice of modeling approach.Comment: preprint of Pedestrian and Evacuation 2012 conference (PED2012) contributio

    Non-locality and Medium Effects in the Exclusive Photoproduction of Eta Mesons on Nuclei

    Full text link
    A relativistic model for the quasifree exclusive photoproduction of η\eta mesons on nuclei is extended to include both non-local and medium effects. The reaction is assumed to proceed via the dominant contribution of the S11_{11}(1535) resonance. The complicated integrals resulting from the non-locality are simplified using a modified version of a method given by Cooper and Maxwell. The non-locality effects are found to affect the magnitude of the cross section. Some possibilities reflecting the effects of the medium on the propagation and properties of the intermediate S11_{11} resonance are studied. The effects of allowing the S11_{11} to interact with the medium via mean field scalar and vector potentials are considered. Both broadening of width and reduction in mass of the resonance lead to a suppression of the calculated cross sections.Comment: 19 pages, 7 figure

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    Relativistic Calculations for the Exclusive Photoproduction of Eta Mesons from Complex Nuclei

    Get PDF
    A relativistic model for the quasifree photoproduction of eta meson from complex nuclei is developed. The interactions between fields are introduced through effective Lagrangians. Contributions from several nucleon resonances as well as nucleon Born terms and vector meson exchange diagrams are included. Nucleon and eta wavefunctions are solutions of Dirac and Klein-Gordon equations, respectively. Final state interactions of the outgoing particles are included via optical potentials. The effects of these interactions on the cross sections and photon asymmetries are studied and are found to be large. Calculations indicate that at energies near threshold the exclusive reaction takes place mainly through formation of the S_{11}(1535) resonance. Comparisons with the non-relativistic calculations show differences between the two approaches both for the cross sections and photon asymmetries. We give some detailed predictions for the reaction observables for exclusive photoproduction on ^{12}C, ^{16}O and ^{40}Ca.Comment: Latex, 27 pages, 13 uuencoded postscript figures. Accepted for publication in Phys. Rev.

    Does consultation improve decision-making?

    Get PDF
    This paper reports an experiment designed to test whether prior consultation within a group affects subsequent individual decision-making in tasks where demonstrability of correct solutions is low. In our experiment, subjects considered two paintings created by two different artists and were asked to guess which artist made each painting. We observed answers given by individuals under two treatments: In one, subjects were allowed the opportunity to consult with other participants before making their private decisions; in the other, there was no such opportunity. Our primary findings are that subjects in the first treatment evaluate the opportunity to consult positively, but they perform significantly worse and earn significantly less
    corecore