1,209 research outputs found

    Convergence of random zeros on complex manifolds

    Full text link
    We show that the zeros of random sequences of Gaussian systems of polynomials of increasing degree almost surely converge to the expected limit distribution under very general hypotheses. In particular, the normalized distribution of zeros of systems of m polynomials of degree N, orthonormalized on a regular compact subset K of C^m, almost surely converge to the equilibrium measure on K as the degree N goes to infinity.Comment: 16 page

    Scaling asymptotics for quantized Hamiltonian flows

    Full text link
    In recent years, the near diagonal asymptotics of the equivariant components of the Szeg\"{o} kernel of a positive line bundle on a compact symplectic manifold have been studied extensively by many authors. As a natural generalization of this theme, here we consider the local scaling asymptotics of the Toeplitz quantization of a Hamiltonian symplectomorphism, and specifically how they concentrate on the graph of the underlying classical map

    Community-based control of a neglected tropical disease: the mossy foot treatment and prevention association

    Get PDF
    Podoconiosis (endemic non-filarial elephantiasis, also known as mossy foot) is a non-communicable disease now found exclusively in the tropics, caused by the conjunction of environmental, genetic, and economic factors. Silicate particles formed by the disintegration of lava in areas of high altitude (over 1,000 m) and seasonal rainfall (over 1,000 mm per annum) penetrate the skin of barefoot subsistence farmers, and in susceptible individuals cause lymphatic blockage and subsequent elephantiasis [1]. Although an estimated one million Ethiopians (of a total population of 77 million) are afflicted with podoconiosis [2], which creates a huge economic burden in endemic areas [3], no national policy has yet been developed to control or prevent the condition, and most affected communities remain unaware of treatment options

    Local trace formulae and scaling asymptotics in Toeplitz quantization

    Full text link
    A trace formula for Toeplitz operators was proved by Boutet de Monvel and Guillemin in the setting of general Toeplitz structures. Here we give a local version of this result for a class of Toeplitz operators related to continuous groups of symmetries on quantizable compact symplectic manifolds. The local trace formula involves certain scaling asymptotics along the clean fixed locus of the Hamiltonian flow of the symbol, reminiscent of the scaling asymptotics of the equivariant components of the Szeg\"o kernel along the diagonal

    Semiclassical almost isometry

    Full text link
    Let M be a complex projective manifold, and L an Hermitian ample line bundle on it. A fundamental theorem of Gang Tian, reproved and strengthened by Zelditch, implies that the Khaeler form of L can be recovered from the asymptotics of the projective embeddings associated to large tensor powers of L. More precisely, with the natural choice of metrics the projective embeddings associated to the full linear series |kL| are asymptotically symplectic, in the appropriate rescaled sense. In this article, we ask whether and how this result extends to the semiclassical setting. Specifically, we relate the Weinstein symplectic structure on a given isodrastic leaf of half-weighted Bohr-Sommerfeld Lagrangian submanifolds of M to the asymptotics of the the pull-back of the Fubini-Study form under the semiclassical projective maps constructed by Borthwick, Paul and Uribe.Comment: exposition improve

    Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process

    Full text link
    Consider the zero set of the random power series f(z)=sum a_n z^n with i.i.d. complex Gaussian coefficients a_n. We show that these zeros form a determinantal process: more precisely, their joint intensity can be written as a minor of the Bergman kernel. We show that the number of zeros of f in a disk of radius r about the origin has the same distribution as the sum of independent {0,1}-valued random variables X_k, where P(X_k=1)=r^{2k}. Moreover, the set of absolute values of the zeros of f has the same distribution as the set {U_k^{1/2k}} where the U_k are i.i.d. random variables uniform in [0,1]. The repulsion between zeros can be studied via a dynamic version where the coefficients perform Brownian motion; we show that this dynamics is conformally invariant.Comment: 37 pages, 2 figures, updated proof

    Cross theorems with singularities

    Full text link
    We establish extension theorems for separately holomorphic mappings defined on sets of the form W\setminus M with values in a complex analytic space which possesses the Hartogs extension property. Here W is a 2-fold cross of arbitrary complex manifolds and M is a set of singularities which is locally pluripolar (resp. thin) in fibers.Comment: 30 pages. A previous version is available at the ICTP preprints website (ref. IC2007073

    Positivity of relative canonical bundles and applications

    Full text link
    Given a family f:XSf:\mathcal X \to S of canonically polarized manifolds, the unique K\"ahler-Einstein metrics on the fibers induce a hermitian metric on the relative canonical bundle KX/S\mathcal K_{\mathcal X/S}. We use a global elliptic equation to show that this metric is strictly positive on X\mathcal X, unless the family is infinitesimally trivial. For degenerating families we show that the curvature form on the total space can be extended as a (semi-)positive closed current. By fiber integration it follows that the generalized Weil-Petersson form on the base possesses an extension as a positive current. We prove an extension theorem for hermitian line bundles, whose curvature forms have this property. This theorem can be applied to a determinant line bundle associated to the relative canonical bundle on the total space. As an application the quasi-projectivity of the moduli space Mcan\mathcal M_{\text{can}} of canonically polarized varieties follows. The direct images RnpfΩX/Sp(KX/Sm)R^{n-p}f_*\Omega^p_{\mathcal X/S}(\mathcal K_{\mathcal X/S}^{\otimes m}), m>0m > 0, carry natural hermitian metrics. We prove an explicit formula for the curvature tensor of these direct images. We apply it to the morphisms SpTSRpfΛpTX/SS^p \mathcal T_S \to R^pf_*\Lambda^p\mathcal T_{\mathcal X/S} that are induced by the Kodaira-Spencer map and obtain a differential geometric proof for hyperbolicity properties of Mcan\mathcal M_{\text{can}}.Comment: Supercedes arXiv:0808.3259v4 and arXiv:1002.4858v2. To appear in Invent. mat

    Equidistribution of zeros of holomorphic sections in the non compact setting

    Full text link
    We consider N-tensor powers of a positive Hermitian line bundle L over a non-compact complex manifold X. In the compact case, B. Shiffman and S. Zelditch proved that the zeros of random sections become asymptotically uniformly distributed with respect to the natural measure coming from the curvature of L, as N tends to infinity. Under certain boundedness assumptions on the curvature of the canonical line bundle of X and on the Chern form of L we prove a non-compact version of this result. We give various applications, including the limiting distribution of zeros of cusp forms with respect to the principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the higher dimensional case of arithmetic quotients and the case of orthogonal polynomials with weights at infinity. We also give estimates for the speed of convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape
    corecore