15,070 research outputs found

    Entanglement creation between two causally-disconnected objects

    Full text link
    We study the full entanglement dynamics of two uniformly accelerated Unruh-DeWitt detectors with no direct interaction in between but each coupled to a common quantum field and moving back-to-back in the field vacuum. For two detectors initially prepared in a separable state our exact results show that quantum entanglement between the detectors can be created by the quantum field under some specific circumstances, though each detector never enters the other's light cone in this setup. In the weak coupling limit, this entanglement creation can occur only if the initial moment is placed early enough and the proper acceleration of the detectors is not too large or too small compared to the natural frequency of the detectors. Once entanglement is created it lasts only a finite duration, and always disappears at late times. Prior result by Reznik derived using the time-dependent perturbation theory with extended integration domain is shown to be a limiting case of our exact solutions at some specific moment. In the strong coupling and high acceleration regime, vacuum fluctuations experienced by each detector locally always dominate over the cross correlations between the detectors, so entanglement between the detectors will never be generated.Comment: 16 pages, 8 figures; added Ref.[7] and related discussion

    Disentanglement of two harmonic oscillators in relativistic motion

    Full text link
    We study the dynamics of quantum entanglement between two Unruh-DeWitt detectors, one stationary (Alice), and another uniformly accelerating (Rob), with no direct interaction but coupled to a common quantum field in (3+1)D Minkowski space. We find that for all cases studied the initial entanglement between the detectors disappears in a finite time ("sudden death"). After the moment of total disentanglement the correlations between the two detectors remain nonzero until late times. The relation between the disentanglement time and Rob's proper acceleration is observer dependent. The larger the acceleration is, the longer the disentanglement time in Alice's coordinate, but the shorter in Rob's coordinate.Comment: 16 pages, 8 figures; typos added, minor changes in Secs. I and

    Kinetic Inductance of Josephson Junction Arrays: Dynamic and Equilibrium Calculations

    Full text link
    We show analytically that the inverse kinetic inductance L1L^{-1} of an overdamped junction array at low frequencies is proportional to the admittance of an inhomogeneous equivalent impedance network. The ijthij^{th} bond in this equivalent network has an inverse inductance Jijcos(θi0θj0Aij)J_{ij}\cos(\theta_i^0-\theta_j^0-A_{ij}), where JijJ_{ij} is the Josephson coupling energy of the ijthij^{th} bond, θi0\theta_i^0 is the ground-state phase of the grain ii, and AijA_{ij} is the usual magnetic phase factor. We use this theorem to calculate L1L^{-1} for square arrays as large as 180×180180\times 180. The calculated L1L^{-1} is in very good agreement with the low-temperature limit of the helicity modulus γ\gamma calculated by conventional equilibrium Monte Carlo techniques. However, the finite temperature structure of γ\gamma, as a function of magnetic field, is \underline{sharper} than the zero-temperature L1L^{-1}, which shows surprisingly weak structure. In triangular arrays, the equilibrium calculation of γ\gamma yields a series of peaks at frustrations f=12(11/N)f = \frac{1}{2}(1-1/N), where NN is an integer 2\geq 2, consistent with experiment.Comment: 14 pages + 6 postscript figures, 3.0 REVTe

    Unruh Effect under Non-equilibrium conditions: Oscillatory motion of an Unruh-DeWitt detector

    Full text link
    The Unruh effect refers to the thermal fluctuations a detector experiences while undergoing linear motion with uniform acceleration in a Minkowski vacuum. This thermality can be demonstrated by tracing the vacuum state of the field over the modes beyond the accelerated detector's event horizon. However, the event horizon is well-defined only if the detector moves with eternal uniform linear acceleration. This idealized condition cannot be fulfilled in realistic situations when the motion unavoidably involves periods of non-uniform acceleration. Many experimental proposals to test the Unruh effect are of this nature. Often circular or oscillatory motion, which lacks an obvious geometric description, is considered in such proposals. The proper perspective for theoretically going beyond, or experimentally testing, the Unruh-Hawking effect in these more general conditions has to be offered by concepts and techniques in non-equilibrium quantum field theory. In this paper we provide a detailed analysis of how an Unruh-DeWitt detector undergoing oscillatory motion responds to the fluctuations of a quantum field. Numerical results for the late-time temperatures of the oscillating detector are presented. We comment on the digressions of these results from what one would obtain from a naive application of Unruh's result.Comment: 23 pages, 11 figures. Minor revision, new references adde

    Modified Mediterranean Diet for Enrichment of Short Chain Fatty Acids: Potential Adjunctive Therapeutic to Target Immune and Metabolic Dysfunction in Schizophrenia?

    Get PDF
    Growing interest in gut and digestive processes and their potential link to brain and peripheral based inflammation or biobehavioral phenotypes has led to an increasing number of basic and translational scientific reports focused on the role of gut microbiota within the context of neuropsychiatric disorders. However, the effect of dietary modification on specific gut metabolites, in association with immune, metabolic, and psychopathological functioning in schizophrenia spectrum disorders has not been well characterized. The short chain fatty acids (SCFA) acetate, butyrate, and propionate, major metabolites derived from fermentation of dietary fibers by gut microbes, interact with multiple immune and metabolic pathways. The specific pathways that SCFA are thought to target, are dysregulated in cardiovascular disease, type II diabetes, and systemic inflammation. Most notably, these disorders are consistently linked to an attenuated lifespan in schizophrenia. Although, unhealthy dietary intake patterns and increased prevalence of immune and metabolic dysfunction has been observed in people with schizophrenia; dietary interventions have not been well utilized to target immune or metabolic illness. Prior schizophrenia patient trials primarily focused on the effects of gluten free diets. Findings from these studies indicate that a diet avoiding gluten benefits a limited subset of patients, individuals with celiac disease or non-celiac gluten sensitivity. Therefore, alternative dietary and nutritional modifications such as high-fiber, Mediterranean style, diets that enrich the production of SCFA, while being associated with a minimal likelihood of adverse events, may improve immune and cardiovascular outcomes linked to premature mortality in schizophrenia. With a growing literature demonstrating that SCFA can cross the blood brain barrier and target key inflammatory and metabolic pathways, this article highlights enriching dietary intake for SCFA as a potential adjunctive therapy for people with schizophrenia
    corecore