304 research outputs found

    Exhaust Nozzles for Supersonic Flight with Turbojet Engines

    Get PDF
    Good internal performance over a wide range of flight conditions can be obtained with either a plug nozzle or a variable ejector nozzle that can provide a divergent shroud at high pressure ratios. For both the ejector and the plug nozzle, external flow can sometimes cause serious drag losses and, for some plug-nozzle installations, external flow can cause serious internal performance losses. Plug-nozzle cooling and design of the secondary-air-flow systems for ejectors were also considered

    The potential for climate-driven bathymetric range shifts: sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes varians

    No full text
    Range shifts are of great importance as a response for species facing climate change. In the light of current ocean-surface warming, many studies have focused on the capacity of marine ectotherms to shift their ranges latitudinally. Bathymetric range shifts offer an important alternative, and may be the sole option for species already at high latitudes or those within enclosed seas; yet relevant data are scant. Hydrostatic pressure (HP) and temperature have wide ranging effects on physiology, importantly acting in synergy thermodynamically, and therefore represent key environmental constraints to bathymetric migration. We present data on transcriptional regulation in a shallow-water marine crustacean (Palaemonetes varians) at atmospheric and high HP following 168-h exposures at three temperatures across the organisms' thermal scope, to establish the potential physiological limit to bathymetric migration by neritic fauna. We observe changes in gene expression indicative of cellular macromolecular damage, disturbances in metabolic pathways and a lack of acclimation after prolonged exposure to high HP. Importantly, these effects are ameliorated (less deleterious) at higher temperatures, and exacerbated at lower temperatures. These data, alongside previously published behavioural and heat-shock analyses, have important implications for our understanding of the potential for climate-driven bathymetric range shift

    Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences

    Get PDF
    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.

    Effect of design changes and operating conditions on combustion and operational performance of a 28-inch diameter Ram-jet engine / T. B. Shillito and Shigeo Nakanishi

    Get PDF
    The results of an altitude test-chamber investigation of the effects of a number of design changes and operating conditions on altitude peformance of a 28-inch diameter ram jet engine are presented. Most of the investigation was for a simulated flight Mach number of 2.0 above the tropopause. Fuel-air distribution, gutter width, the presence of a pilot flame, cimbustion-chamber-inlet temperature, and exhaust-nozzle throat area were found to have significant effects on limits of combustion. Combustion efficiency increased with increasing combustion-chamber-inlet temperature and was adversely affected by an increase in the exhaust-nozzld area. Similiar lean limits of combustion were obtained for both Diesel fuel and normal heptane, but combustion efficiences obtained with Diesel fuel were lower than those obtained with normal heptane

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Insights into metazoan evolution from <i>Alvinella pompejana</i> cDNAs

    Get PDF
    BackgroundAlvinella pompejana is a representative of Annelids, a key phylum for evo-devo studies that is still poorly studied at the sequence level. A. pompejana inhabits deep-sea hydrothermal vents and is currently known as one of the most thermotolerant Eukaryotes in marine environments, withstanding the largest known chemical and thermal ranges (from 5 to 105°C). This tube-dwelling worm forms dense colonies on the surface of hydrothermal chimneys and can withstand long periods of hypo/anoxia and long phases of exposure to hydrogen sulphides. A. pompejana specifically inhabits chimney walls of hydrothermal vents on the East Pacific Rise. To survive, Alvinella has developed numerous adaptations at the physiological and molecular levels, such as an increase in the thermostability of proteins and protein complexes. It represents an outstanding model organism for studying adaptation to harsh physicochemical conditions and for isolating stable macromolecules resistant to high temperatures.ResultsWe have constructed four full length enriched cDNA libraries to investigate the biology and evolution of this intriguing animal. Analysis of more than 75,000 high quality reads led to the identification of 15,858 transcripts and 9,221 putative protein sequences. Our annotation reveals a good coverage of most animal pathways and networks with a prevalence of transcripts involved in oxidative stress resistance, detoxification, anti-bacterial defence, and heat shock protection. Alvinella proteins seem to show a slow evolutionary rate and a higher similarity with proteins from Vertebrates compared to proteins from Arthropods or Nematodes. Their composition shows enrichment in positively charged amino acids that might contribute to their thermostability. The gene content of Alvinella reveals that an important pool of genes previously considered to be specific to Deuterostomes were in fact already present in the last common ancestor of the Bilaterian animals, but have been secondarily lost in model invertebrates. This pool is enriched in glycoproteins that play a key role in intercellular communication, hormonal regulation and immunity.ConclusionsOur study starts to unravel the gene content and sequence evolution of a deep-sea annelid, revealing key features in eukaryote adaptation to extreme environmental conditions and highlighting the proximity of Annelids and Vertebrates

    Altitude Test Chamber Investigation of Performance of a 28-inch Ram-jet Engine II : Effects of Gutter Width and Blocked Area on Operating Range and Combustion Efficiency

    Get PDF
    Altitude-test-chamber investigation of effects of flame-holder blocked area and gutter width on performance of 28-inch diameter ram jet at simulated flight Mach number of 2.0 for altitudes from 40,000 to 55,000 feet was conducted at NACA Lewis laboratory. Ten flame holders investigated covered gutter widths from 1.00 to 2.50 inches and blocked areas from 40.5 to 62.0 percent of combustion-chamber area. Gutter width did not appreciably affect combustion efficiency. Increase in blocked area from 40 to 62 percent resulted in 5- to 10-percent increase in combustion efficiency. Increasing gutter width resulted in improvement in fuel-air-ratio operating range
    corecore