1,026 research outputs found
Nuclear mass form factors from coherent photoproduction of mesons
Data for coherent photoproduction of mesons from nuclei (C,
Ca, Nb, Pb), recently measured with the TAPS detector at
the Mainz MAMI accelerator, have been analyzed in view of the mass form factors
of the nuclei. The form factors have been extracted in plane wave approximation
of the reaction and corrected for final state interaction
effects with the help of distorted wave impulse approximations. Nuclear mass
rms-radii have been calculated from the slope of the form factors for . Furthermore, the Helm model (hard sphere form factor folded with Gaussian)
was used to extract diffraction radii from the zeroes of the form factor and
skin thicknesses from the position and height of its first maximum. The
diffraction radii from the Helm model agree with the corresponding charge radii
obtained from electron scattering experiments within their uncertainties of a
few per cent. The rms-radii from the slope of the form factors are
systematically lower by up to 5% for PWIA and up to 10% for DWIA. Also the skin
thicknesses extracted from the Helm model are systematically smaller than their
charge counter parts.Comment: Accepted for publication in Eur. Phys. J.
y scaling in electron-nucleus scattering
Data on inclusive electron scattering from A = 4, 12, 27, 56, 197 nuclei at large momentum transfer are presented and analyzed in terms of y scaling. We find that the data do scale for y 1), and we study the convergence of the scaling function with the momentum transfer Q^2 and A
Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei
Superscaling analyses of few-GeV inclusive electron scattering from nuclei
are extended to include not only quasielastic processes, but now also into the
region where -excitation dominates. It is shown that, with reasonable
assumptions about the basic nuclear scaling function extracted from data and
information from other studies of the relative roles played by correlation and
MEC effects, the residual strength in the resonance region can be accounted for
through an extended scaling analysis. One observes scaling upon assuming that
the elementary cross section by which one divides the residual to obtain a new
scaling function is dominated by the transition and employing a
new scaling variable which is suited to the resonance region. This yields a
good representation of the electromagnetic response in both the quasielastic
and regions. The scaling approach is then inverted and predictions are
made for charge-changing neutrino reactions at energies of a few GeV, with
focus placed on nuclei which are relevant for neutrino oscillation
measurements. For this a relativistic treatment of the required weak
interaction vector and axial-vector currents for both quasielastic and
-excitation processes is presented.Comment: 42 pages, 9 figures, accepted for publication in Physical Review
A high-precision polarimeter
We have built a polarimeter in order to measure the electron beam
polarization in hall C at JLAB. Using a superconducting solenoid to drive the
pure-iron target foil into saturation, and a symmetrical setup to detect the
Moller electrons in coincidence, we achieve an accuracy of <1%. This sets a new
standard for Moller polarimeters.Comment: 17 pages, 9 figures, submitted to N.I.
Ground state correlations and mean-field in O: Part II
We continue the investigations of the O ground state using the
coupled-cluster expansion [] method with realistic nuclear
interaction. In this stage of the project, we take into account the three
nucleon interaction, and examine in some detail the definition of the internal
Hamiltonian, thus trying to correct for the center-of-mass motion. We show that
this may result in a better separation of the internal and center-of-mass
degrees of freedom in the many-body nuclear wave function. The resulting ground
state wave function is used to calculate the "theoretical" charge form factor
and charge density. Using the "theoretical" charge density, we generate the
charge form factor in the DWBA picture, which is then compared with the
available experimental data. The longitudinal response function in inclusive
electron scattering for O is also computed.Comment: 9 pages, 7 figure
Inclusive quasi-elastic electron-nucleus scattering
This article presents a review of the field of inclusive quasi-elastic
electron-nucleus scattering. It discusses the approach used to measure the data
and includes a compilation of data available in numerical form. The theoretical
approaches used to interpret the data are presented. A number of results
obtained from the comparison between experiment and calculation are then
reviewed. The analogies and differences to other fields of physics exploiting
quasi-elastic scattering from composite systems are pointed out.Comment: Accepted for publication in Reviews of Modern Physic
The size of the proton - closing in on the radius puzzle
We analyze the recent electron-proton scattering data from Mainz using a
dispersive framework that respects the constraints from analyticity and
unitarity on the nucleon structure. We also perform a continued fraction
analysis of these data. We find a small electric proton charge radius, r_E^p =
0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic
hydrogen measurements and earlier dispersive analyses. We also extract the
proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with
earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on
continued fractions modified, conclusions on the proton charge radius
unchanged, version accepted for publication in European Physical Journal
Ground State Correlations in 16O and 40Ca
We study the ground state properties of doubly closed shell nuclei O
and Ca in the framework of Correlated Basis Function theory using state
dependent correlations, with central and tensor components. The realistic
Argonne and two-nucleon potentials and three-nucleon
potentials of the Urbana class have been adopted. By means of the Fermi
Hypernetted Chain integral equations, in conjunction with the Single Operator
Chain approximation, we evaluate the ground state energy, one- and two-body
densities and electromagnetic and spin static responses for both nuclei. In
O we compare our results with the available Monte Carlo and Coupled
Cluster ones and find a satisfying agreement. As in the nuclear matter case
with similar interactions and wave functions, the nuclei result under-bound by
2--3 MeV/A.Comment: 33 RevTeX pages + 8 figures, to appear in Phys.Rev.
- …
