1,006 research outputs found
Stochastic modeling of Congress
We analyze the dynamics of growth of the number of congressmen supporting the
resolution HR1207 to audit the Federal Reserve. The plot of the total number of
co-sponsors as a function of time is of "Devil's staircase" type. The
distribution of the numbers of new co-sponsors joining during a particular day
(step height) follows a power law. The distribution of the length of intervals
between additions of new co-sponsors (step length) also follows a power law. We
use a modification of Bak-Tang-Wiesenfeld sandpile model to simulate the
dynamics of Congress and obtain a good agreement with the data
Velocities from Cross-Correlation: A Guide for Self-Improvement
The measurement of Doppler velocity shifts in spectra is a ubiquitous theme
in astronomy, usually handled by computing the cross-correlation of the
signals, and finding the location of its maximum. This paper addresses the
problem of the determination of wavelength or velocity shifts among multiple
spectra of the same, or very similar, objects. We implement the classical
cross-correlation method and experiment with several simple models to determine
the location of the maximum of the cross-correlation function. We propose a new
technique, 'self-improvement', to refine the derived solutions by requiring
that the relative velocity for any given pair of spectra is consistent with all
others. By exploiting all available information, spectroscopic surveys
involving large numbers of similar objects may improve their precision
significantly. As an example, we simulate the analysis of a survey of G-type
stars with the SDSS instrumentation. Applying 'self-improvement' refines
relative radial velocities by more than 50% at low signal-to-noise ratio. The
concept is equally applicable to the problem of combining a series of
spectroscopic observations of the same object, each with a different Doppler
velocity or instrument-related offset, into a single spectrum with an enhanced
signal-to-noise ratio.Comment: 7 pages, 3 figures, uses emulateapj.cls; to appear in the
Astronomical Journal; see http://hebe.as.utexas.edu/stools/ to obtain the
companion softwar
The integrity challenge of the Internet-of-Things (IoT):on understanding its dark side
Despite the overall positive feeling about Internet of Things’ (IoT) development, a main risk involves the integrity of the system itself. This paper considers the influence of the IoT on marketing practices and addresses the overlooked area of the dark side of the IoT. Dysfunctional forms of IoT have been neglected as an area of research, so identifying the different types of IoT providers’ dark-side behaviours will assist in the development of an integrated approach to the IoT that will help to overcome or mitigate these dark-side behaviours. Based on an extensive literature review, supplemented by expert insights drawn from the authors’ study of the IoT, a framework is developed that classifies the varying IoT dark-side behaviour types. The framework reveals eight forms of dark-side behaviour that are grouped into four broad categories. This classification illustrates how different types of dark-side behaviours are linked to key strategic IoT processes and also outlines how these dark-side practices may be addressed by adopting a more strategic and integrity-oriented approach. We conclude that with the adoption of a more holistic approach to the IoT, dark-side behaviours can be addressed and move in the direction of more effective marketing practices. This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Marketing Management on 4 Nov 2016, available online: http://www.tandfonline.com/ 10.1080/0267257X.2016.124751
Extended Emission Line Gas in Radio Galaxies - PKS0349-27
PKS0349-27 is a classical FRII radio galaxy with an AGN host which has a
spectacular, spiral-like structure in its extended emission line gas (EELG). We
have measured the velocity field in this gas and find that it splits into 2
cloud groups separated by radial velocities which at some points approach 400
km/s Measurements of the diagnostic emission line ratios [OIII]5007/H-beta,
[SII]6716+6731/H-alpha, and [NII]6583/H-alpha in these clouds show no evidence
for the type of HII region emission associated with starburst activity in
either velocity system. The measured emission line ratios are similar to those
found in the nuclei of narrow-line radio galaxies, but the extended
ionization/excitation cannot be produced by continuum emission from the active
nucleus alone. We present arguments which suggest that the velocity
disturbances seen in the EELG are most likely the result of a galaxy-galaxy
collision or merger but cannot completely rule out the possibility that the gas
has been disrupted by the passage of a radio jet.Comment: 12 pages, 3 fig pages, to appear in the Astrophys.
Domain Walls Motion and Resistivity in a Fully-Frustrated Josephson Array
It is identified numerically that the resistivity of a fully-frustrated
Josephson-junction array is due to motion of domain walls in vortex lattice
rather than to motion of single vortices
Thermoelectric performance of granular semiconductors
We study thermoelectric properties of granular semiconductors with weak
tunneling conductance between the grains, g_t < 1. We calculate the thermopower
and figure of merit taking into account the shift of the chemical potential and
the asymmetry of the density of states in the vicinity of the Fermi surface due
to n- or p-type doping in the Efros-Shklovskii regime for temperatures less
than the charging energy. We show that for weakly coupled semiconducting grains
the figure of merit is optimized for grain sizes of order 5nm for typical
materials and its values can be larger than one. We also study the case of
compensated granular semiconductors and show that in this case the thermopower
can be still finite, although two to three orders of magnitude smaller than in
the uncompensated regime.Comment: 4 pages, 4 figure
Minimum Thermal Conductivity of Superlattices
The phonon thermal conductivity of a multilayer is calculated for transport
perpendicular to the layers. There is a cross over between particle transport
for thick layers to wave transport for thin layers. The calculations shows that
the conductivity has a minimum value for a layer thickness somewhat smaller
then the mean free path of the phonons.Comment: new results added, to appear in PR
Log-Networks
We introduce a growing network model in which a new node attaches to a
randomly-selected node, as well as to all ancestors of the target node. This
mechanism produces a sparse, ultra-small network where the average node degree
grows logarithmically with network size while the network diameter equals 2. We
determine basic geometrical network properties, such as the size dependence of
the number of links and the in- and out-degree distributions. We also compare
our predictions with real networks where the node degree also grows slowly with
time -- the Internet and the citation network of all Physical Review papers.Comment: 7 pages, 6 figures, 2-column revtex4 format. Version 2: minor changes
in response to referee comments and to another proofreading; final version
for PR
Giant Shapiro steps for two-dimensional Josephson-junction arrays with time-dependent Ginzburg-Landau dynamics
Two-dimensional Josephson junction arrays at zero temperature are
investigated numerically within the resistively shunted junction (RSJ) model
and the time-dependent Ginzburg-Landau (TDGL) model with global conservation of
current implemented through the fluctuating twist boundary condition (FTBC).
Fractional giant Shapiro steps are found for {\em both} the RSJ and TDGL cases.
This implies that the local current conservation, on which the RSJ model is
based, can be relaxed to the TDGL dynamics with only global current
conservation, without changing the sequence of Shapiro steps. However, when the
maximum widths of the steps are compared for the two models some qualitative
differences are found at higher frequencies. The critical current is also
calculated and comparisons with earlier results are made. It is found that the
FTBC is a more adequate boundary condition than the conventional uniform
current injection method because it minimizes the influence of the boundary.Comment: 6 pages including 4 figures in two columns, final versio
- …
