36 research outputs found

    Trophic ecology of common elasmobranchs exploited by artisanal shark fisheries off south-western Madagascar

    Get PDF
    Knowledge of the trophic ecology and interactions of marine top predators is fundamental for understanding community structure and dynamics as well as ecosystem function. We examined the feeding relationships of 4 heavily exploited elasmobranchs caught in coastal artisanal shark fisheries in south-western Madagascar in 2009 and 2010—Sphyrna lewini, Loxodon macrorhinus, Carcharhinus falciformis and Rhynchobatus djiddensis—using stable isotope (δ15N and δ13C) analysis. Relative trophic position (indicated by δ15N) and foraging location (indicated by δ13C) differed among species. Isotopic niche width was highly variable: more pelagic species, such as S. lewini and C. falciformis, had the broadest isotopic niches while the benthic R. djiddensis had the narrowest. A high percentage of niche overlap occurred between R. djiddensis and 2 of the species, C. falciformis (93.2%) and L. macrorhinus (73.2%), and to a lesser extent S. lewini (13.3%). Relative trophic position of S. lewini significantly increased with size, suggesting a dietary shift with age. Sex differences in δ15N values were observed in L. macrorhinus, suggesting intraspecific niche partitioning. Variation in stable isotope values among these 4 highly exploited elasmobranch species indicates trophic structuring, likely driven by differences in diet and habitat use as well as by size and sex. This study provides the first baseline information on the trophic ecology of elasmobranchs caught in artisanal fisheries from south-western Madagascar

    Habitat availability and geographic isolation as potential drivers of population structure in an oceanic dolphin in the Southwest Indian Ocean

    Get PDF
    Delphinid populations show highly variable patternsof genetic diversity and population structure. Previousstudies indicate that habitat discontinuities and geographicisolation are major drivers of population divisionin cetaceans. Spinner dolphins (Stenella longirostris) aredistributed in all tropical oceans, but they are particularlycommon around islands and atolls. This species occurs inshallow waters at daytime to rest and socialise, and feedson offshore mesopelagic prey overnight. Here, we investigatedthe genetic population structure of spinner dolphinsin the Southwest Indian Ocean along a west–east geographicgradient, from eastern Africa to the Mascarenearchipelago. We combined analyses of 12 microsatellite loci, mtDNA control region sequences, and sighting datato assess genetic differentiation and characterise habitatpreferences of these populations. Significant genetic structureamong the three sampled sites (Zanzibar, Mayotte andLa R\ue9union) was observed using both types of molecularmarkers. Overall, our results indicate that geographic isolationand potentially other factors, such as shallow-waterhabitats to rest and socialise, may be important drivers ofthe genetic population structure of insular spinner dolphinsin this region

    Inter-species differences in polychlorinated biphenyls patterns from five sympatric species of odontocetes : Can PCBs be used as tracers of feeding ecology?

    Get PDF
    The authors gratefully acknowledge the assistance of volunteers from the Galician (CEMMA) and Portuguese (SPVS) stranding networks. The authors would like to thank R. Gallois and C. Trichet for their participation on total lipid content analysis. P. Méndez-Fernandez was supported during the research period through a PhD grant from the Fundação do Ministério de Ciência e Tecnologia de Portugal and ANIMATE project (SFRH/BD/36766/2007) and through a Science Without Borders (CSF) young talent postdoctoral grant of the Brazilian government. G. J. Pierce acknowledges support from the EU ANIMATE project (MEXC-CT-2006-042337), University of Aveiro and Caixa Geral de Depósitos (Portugal).Peer reviewedPostprin

    "Nested" cryptic diversity in a widespread marine ecosystem engineer: a challenge for detecting biological invasions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt <it>Pyura stolonifera</it>, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit.</p> <p>Results</p> <p>Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within <it>Pyura stolonifera </it>in the different coastal communities they dominate.</p> <p>Conclusions</p> <p>This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.</p

    The Whereabouts of an Ancient Wanderer: Global Phylogeography of the Solitary Ascidian Styela plicata

    Get PDF
    Genetic tools have greatly aided in tracing the sources and colonization history of introduced species. However, recurrent introductions and repeated shuffling of populations may have blurred some of the genetic signals left by ancient introductions. Styela plicata is a solitary ascidian distributed worldwide. Although its origin remains unclear, this species is believed to have spread worldwide by travelling on ship's hulls. The goals of this study were to infer the genetic structure and global phylogeography of S. plicata and to look for present-day and historical genetic patterns. Two genetic markers were used: a fragment of the mitochondrial gene Cytochrome Oxidase subunit I (COI) and a fragment of the nuclear gene Adenine Nucleotide Transporter/ADP-ATP Translocase (ANT). A total of 368 individuals for COI and 315 for ANT were sequenced from 17 locations worldwide. The levels of gene diversity were moderate for COI to high for ANT. The Mediterranean populations showed the least diversity and allelic richness for both markers, while the Indian, Atlantic and Pacific Oceans had the highest gene and nucleotide diversities. Network and phylogenetic analyses with COI and ANT revealed two groups of alleles separated by 15 and 4 mutational steps, respectively. The existence of different lineages suggested an ancient population split. However, the geographic distributions of these groups did not show any consistent pattern, indicating different phylogeographic histories for each gene. Genetic divergence was significant for many population-pairs irrespective of the geographic distance among them. Stochastic introduction events are reflected in the uneven distribution of COI and ANT allele frequencies and groups among many populations. Our results confirmed that S. plicata has been present in all studied oceans for a long time, and that recurrent colonization events and occasional shuffling among populations have determined the actual genetic structure of this species

    Multiple introductions promote range expansion of the mollusc Cyclope neritea (Nassariidae) in France: evidence from mitochondrial sequence data.

    No full text
    International audienceSince the 1970s, the nassariid gastropod Cyclope neritea has been extending its range north along the French Atlantic coasts from the Iberian Peninsula. This may be due to natural spread because of the recent warming of the northeastern Atlantic. However, human-mediated introductions related to shellfish culture may also be a probable explanation for this sudden range expansion. To examine these two hypotheses, we carried out a comprehensive study based on mitochondrial gene sequences (cytochrome oxidase I) of the five recently colonized French bays as well as 14 populations located in the recognized native range of the species. From a total of 594 individuals, we observed 29 haplotypes to split into three divergent clades. In the native range, we observed a low molecular diversity, strong genetic structure and agreement between geography and gene genealogies. Along the French coasts, we observed the opposite: high genetic diversity and low genetic structure. Our results show that recurrent human-mediated introductions from several geographical areas in the native range may be a source for the French Atlantic populations. However, despite the low dispersal ability of C. neritea, the isolation-by-distance pattern in France suggested that this gastropod may have been present (although unnoticed) on the French Atlantic coasts before the 1970s. As C. neritea shows characteristics of a cryptogenic species, the classification of Atlantic populations as either native or introduced is not straightforward. Cryptogenic species should be studied further to determine the status of new populations close to their recognized native range

    Properties of the dynamics of intertidal microphytobenthic biomass

    No full text
    corecore