537 research outputs found

    Chaos and unpredictability in evolutionary dynamics in discrete time

    Get PDF
    A discrete-time version of the replicator equation for two-strategy games is studied. The stationary properties differ from that of continuous time for sufficiently large values of the parameters, where periodic and chaotic behavior replace the usual fixed-point population solutions. We observe the familiar period-doubling and chaotic-band-splitting attractor cascades of unimodal maps but in some cases more elaborate variations appear due to bimodality. Also unphysical stationary solutions have unusual physical implications, such as uncertainty of final population caused by sensitivity to initial conditions and fractality of attractor preimage manifolds.Comment: 4 pages, 4 figure

    Evolutionary Prisoner's Dilemma game on the Newman-Watts networks

    Get PDF
    Maintenance of cooperation was studied for a two-strategy evolutionary Prisoner's Dilemma game where the players are located on a one-dimensional chain and their payoff comes from games with the nearest and next-nearest neighbor interactions. The applied host geometry makes possible to study the impacts of two conflicting topological features. The evolutionary rule involves some noise affecting the strategy adoptions between the interacting players. Using Monte Carlo simulations and the extended versions of dynamical mean-field theory we determined the phase diagram as a function of noise level and a payoff parameter. The peculiar feature of the diagram is changed significantly when the connectivity structure is extended by extra links as suggested by Newman and Watts.Comment: 4 figure

    Evolution of Cooperation and Coordination in a Dynamically Networked Society

    Get PDF
    Situations of conflict giving rise to social dilemmas are widespread in society and game theory is one major way in which they can be investigated. Starting from the observation that individuals in society interact through networks of acquaintances, we model the co-evolution of the agents' strategies and of the social network itself using two prototypical games, the Prisoner's Dilemma and the Stag Hunt. Allowing agents to dismiss ties and establish new ones, we find that cooperation and coordination can be achieved through the self-organization of the social network, a result that is non-trivial, especially in the Prisoner's Dilemma case. The evolution and stability of cooperation implies the condensation of agents exploiting particular game strategies into strong and stable clusters which are more densely connected, even in the more difficult case of the Prisoner's Dilemma.Comment: 18 pages, 14 figures. to appea

    Evolution of Coordination in Social Networks: A Numerical Study

    Get PDF
    Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.Comment: preprint submitted to IJMP

    Social Network Reciprocity as a Phase Transition in Evolutionary Cooperation

    Full text link
    In Evolutionary Dynamics the understanding of cooperative phenomena in natural and social systems has been the subject of intense research during decades. We focus attention here on the so-called "Lattice Reciprocity" mechanisms that enhance evolutionary survival of the cooperative phenotype in the Prisoner's Dilemma game when the population of darwinian replicators interact through a fixed network of social contacts. Exact results on a "Dipole Model" are presented, along with a mean-field analysis as well as results from extensive numerical Monte Carlo simulations. The theoretical framework used is that of standard Statistical Mechanics of macroscopic systems, but with no energy considerations. We illustrate the power of this perspective on social modeling, by consistently interpreting the onset of lattice reciprocity as a thermodynamical phase transition that, moreover, cannot be captured by a purely mean-field approach.Comment: 10 pages. APS styl

    Universality of weak selection

    Full text link
    Weak selection, which means a phenotype is slightly advantageous over another, is an important limiting case in evolutionary biology. Recently it has been introduced into evolutionary game theory. In evolutionary game dynamics, the probability to be imitated or to reproduce depends on the performance in a game. The influence of the game on the stochastic dynamics in finite populations is governed by the intensity of selection. In many models of both unstructured and structured populations, a key assumption allowing analytical calculations is weak selection, which means that all individuals perform approximately equally well. In the weak selection limit many different microscopic evolutionary models have the same or similar properties. How universal is weak selection for those microscopic evolutionary processes? We answer this question by investigating the fixation probability and the average fixation time not only up to linear, but also up to higher orders in selection intensity. We find universal higher order expansions, which allow a rescaling of the selection intensity. With this, we can identify specific models which violate (linear) weak selection results, such as the one--third rule of coordination games in finite but large populations.Comment: 12 pages, 3 figures, accepted for publication in Physical Review

    The uneasy heirs of acquaintance

    Get PDF
    My contribution to the first round of a tetralog with Bill Brewer, Anil Gupta, and John McDowell. Each of us has written a response to the writings of the other three philosophers on the topic "Empirical Reason". My initial contribution focuses on what we know a priori about perception. In the second round, we will each respond to the each writer's first-round contributions

    Emergence of communities on a coevolutive model of wealth interchange

    Full text link
    We present a model in which we investigate the structure and evolution of a random network that connects agents capable of exchanging wealth. Economic interactions between neighbors can occur only if the difference between their wealth is less than a threshold value that defines the width of the economic classes. If the interchange of wealth cannot be done, agents are reconnected with another randomly selected agent, allowing the network to evolve in time. On each interaction there is a probability of favoring the poorer agent, simulating the action of the government. We measure the Gini index, having real world values attached to reality. Besides the network structure showed a very close connection with the economic dynamic of the system.Comment: 5 pages, 7 figure

    Signatures of small-world and scale-free properties in large computer programs

    Full text link
    A large computer program is typically divided into many hundreds or even thousands of smaller units, whose logical connections define a network in a natural way. This network reflects the internal structure of the program, and defines the ``information flow'' within the program. We show that, (1) due to its growth in time this network displays a scale-free feature in that the probability of the number of links at a node obeys a power-law distribution, and (2) as a result of performance optimization of the program the network has a small-world structure. We believe that these features are generic for large computer programs. Our work extends the previous studies on growing networks, which have mostly been for physical networks, to the domain of computer software.Comment: 4 pages, 1 figure, to appear in Phys. Rev.
    corecore