414 research outputs found
Cosmological diagrammatic rules
A simple set of diagrammatic rules is formulated for perturbative evaluation
of ``in-in" correlators, as is needed in cosmology and other nonequilibrium
problems. These rules are both intuitive, and efficient for calculational
purposes.Comment: 7 pages, 3 figure
Fluctuating geometries, q-observables, and infrared growth in inflationary spacetimes
Infrared growth of geometrical fluctuations in inflationary spacetimes is
investigated. The problem of gauge-invariant characterization of growth of
perturbations, which is of interest also in other spacetimes such as black
holes, is addressed by studying evolution of the lengths of curves in the
geometry. These may either connect freely falling "satellites," or wrap
non-trivial cycles of geometries like the torus, and are also used in
diffeomorphism- invariant constructions of two-point functions of field
operators. For spacelike separations significantly exceeding the Hubble scale,
no spacetime geodesic connects two events, but one may find geodesics
constrained to lie within constant-time spatial slices. In inflationary
geometries, metric perturbations produce significant and growing corrections to
the lengths of such geodesics, as we show in both quantization on an inflating
torus and in standard slow-roll inflation. These become large, signaling
breakdown of a perturbative description of the geometry via such observables,
and consistent with perturbative instability of de Sitter space. In particular,
we show that the geodesic distance on constant time slices during inflation
becomes non-perturbative a few e-folds after a given scale has left the
horizon, by distances \sim 1/H^3 \sim RS, obstructing use of such geodesics in
constructing IR-safe observables based on the spatial geometry. We briefly
discuss other possible measures of such geometrical fluctuations.Comment: 33 pages, 2 figures, latex; v2: typos corrected, references improve
Nonlocality vs. complementarity: a conservative approach to the information problem
A proposal for resolution of the information paradox is that "nice slice"
states, which have been viewed as providing a sharp argument for information
loss, do not in fact do so as they do not give a fully accurate description of
the quantum state of a black hole. This however leaves an information
*problem*, which is to provide a consistent description of how information
escapes when a black hole evaporates. While a rather extreme form of
nonlocality has been advocated in the form of complementarity, this paper
argues that is not necessary, and more modest nonlocality could solve the
information problem. One possible distinguishing characteristic of scenarios is
the information retention time. The question of whether such nonlocality
implies acausality, and particularly inconsistency, is briefly addressed. The
need for such nonlocality, and its apparent tension with our empirical
observations of local quantum field theory, may be a critical missing piece in
understanding the principles of quantum gravity.Comment: 11 pages of text and figures, + references. v2 minor text. v3 small
revisions to match final journal versio
South Africa, the arts and youth in conflict with the law
This paper describes the DIME (Diversion into Music Education) youth intervention program that originated in South Africa in 2001. DIME offers instruction in African marimba and djembe bands to juvenile offenders. Conceived as a community collaboration among organizations in the cities of Cape Town, SA and Tampa, USA (including the University of the Western Cape and the University of South
Florida), DIME offers a unique example of community music and multicultural music education.Web of Scienc
Enhancing the tensor-to-scalar ratio in simple inflation
We show that in theories with a nontrivial kinetic term the contribution of
the gravitational waves to the CMB fluctuations can be substantially larger
than that is naively expected in simple inflationary models. This increase of
the tensor-to-scalar perturbation ratio leads to a larger B-component of the
CMB polarization, thus making the prospects for future detection much more
promising. The other important consequence of the considered model is a higher
energy scale of inflation and hence higher reheating temperature compared to a
simple inflation.Comment: 9 pages, 1 figure and references are added, discussion is slightly
extended, published versio
Low-scale Quintessential Inflation
In quintessential inflationary model, the same master field that drives
inflation becomes, later on, the dynamical source of the (present) accelerated
expansion. Quintessential inflationary models require a curvature scale at the
end of inflation around in order to explain the large scale
fluctuations observed in the microwave sky. If the curvature scale at the end
of inflation is much smaller than , the large scale adiabatic
mode may be produced thanks to the relaxation of a scalar degree of freedom,
which will be generically denoted, according to the recent terminology, as the
curvaton field. The production of the adiabatic mode is analysed in detail in
the case of the minimal quintessential inflationary model originally proposed
by Peebles and Vilenkin.Comment: 25 pages; 5 figure
Tracking Curvaton(s)?
The ratio of the curvaton energy density to that of the dominant component of
the background sources may be constant during a significant period in the
evolution of the Universe. The possibility of having tracking curvatons, whose
decay occurs prior to the nucleosynthesis epoch, is studied. It is argued that
the tracking curvaton dynamics is disfavoured since the value of the curvature
perturbations prior to curvaton decay is smaller than the value required by
observations. It is also argued, in a related context, that the minimal
inflationary curvature scale compatible with the curvaton paradigm may be
lowered in the case of low-scale quintessential inflation.Comment: 20 pages, 4figure
Holographic bounds on the UV cutoff scale in inflationary cosmology
We discuss how holographic bounds can be applied to the quantum fluctuations
of the inflaton. In general the holographic principle will lead to a bound on
the UV cutoff scale of the effective theory of inflation, but it will depend on
the coarse-graining prescription involved in calculating the entropy. We
propose that the entanglement entropy is a natural measure of the entropy of
the quantum perturbations, and show which kind of bound on the cutoff it leads
to. Such bounds are related to whether the effects of new physics will show up
in the CMB.Comment: 19 pages, 2 figures;(V3):Comments and references adde
Complex hydrides for hydrogen storage - New perspectives
Since the 1970s, hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: eveloping an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached, as discussed in this review, but a range of new lightweight hydrogen-ontaining materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed, with a focus on metal borohydrides, which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities
Curvatons in Supersymmetric Models
We study the curvaton scenario in supersymmetric framework paying particular
attention to the fact that scalar fields are inevitably complex in
supersymmetric theories. If there are more than one scalar fields associated
with the curvaton mechanism, isocurvature (entropy) fluctuations between those
fields in general arise, which may significantly affect the properties of the
cosmic density fluctuations. We examine several candidates for the curvaton in
the supersymmetric framework, such as moduli fields, Affleck-Dine field, -
and -flat directions, and right-handed sneutrino. We estimate how the
isocurvature fluctuations generated in each case affect the cosmic microwave
background angular power spectrum. With the use of the recent observational
result of the WMAP, stringent constraints on the models are derived and, in
particular, it is seen that large fraction of the parameter space is excluded
if the Affleck-Dine field plays the role of the curvaton field. Natural and
well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure
- …
