414 research outputs found

    Cosmological diagrammatic rules

    Full text link
    A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.Comment: 7 pages, 3 figure

    Fluctuating geometries, q-observables, and infrared growth in inflationary spacetimes

    Full text link
    Infrared growth of geometrical fluctuations in inflationary spacetimes is investigated. The problem of gauge-invariant characterization of growth of perturbations, which is of interest also in other spacetimes such as black holes, is addressed by studying evolution of the lengths of curves in the geometry. These may either connect freely falling "satellites," or wrap non-trivial cycles of geometries like the torus, and are also used in diffeomorphism- invariant constructions of two-point functions of field operators. For spacelike separations significantly exceeding the Hubble scale, no spacetime geodesic connects two events, but one may find geodesics constrained to lie within constant-time spatial slices. In inflationary geometries, metric perturbations produce significant and growing corrections to the lengths of such geodesics, as we show in both quantization on an inflating torus and in standard slow-roll inflation. These become large, signaling breakdown of a perturbative description of the geometry via such observables, and consistent with perturbative instability of de Sitter space. In particular, we show that the geodesic distance on constant time slices during inflation becomes non-perturbative a few e-folds after a given scale has left the horizon, by distances \sim 1/H^3 \sim RS, obstructing use of such geodesics in constructing IR-safe observables based on the spatial geometry. We briefly discuss other possible measures of such geometrical fluctuations.Comment: 33 pages, 2 figures, latex; v2: typos corrected, references improve

    Nonlocality vs. complementarity: a conservative approach to the information problem

    Full text link
    A proposal for resolution of the information paradox is that "nice slice" states, which have been viewed as providing a sharp argument for information loss, do not in fact do so as they do not give a fully accurate description of the quantum state of a black hole. This however leaves an information *problem*, which is to provide a consistent description of how information escapes when a black hole evaporates. While a rather extreme form of nonlocality has been advocated in the form of complementarity, this paper argues that is not necessary, and more modest nonlocality could solve the information problem. One possible distinguishing characteristic of scenarios is the information retention time. The question of whether such nonlocality implies acausality, and particularly inconsistency, is briefly addressed. The need for such nonlocality, and its apparent tension with our empirical observations of local quantum field theory, may be a critical missing piece in understanding the principles of quantum gravity.Comment: 11 pages of text and figures, + references. v2 minor text. v3 small revisions to match final journal versio

    South Africa, the arts and youth in conflict with the law

    Get PDF
    This paper describes the DIME (Diversion into Music Education) youth intervention program that originated in South Africa in 2001. DIME offers instruction in African marimba and djembe bands to juvenile offenders. Conceived as a community collaboration among organizations in the cities of Cape Town, SA and Tampa, USA (including the University of the Western Cape and the University of South Florida), DIME offers a unique example of community music and multicultural music education.Web of Scienc

    Enhancing the tensor-to-scalar ratio in simple inflation

    Full text link
    We show that in theories with a nontrivial kinetic term the contribution of the gravitational waves to the CMB fluctuations can be substantially larger than that is naively expected in simple inflationary models. This increase of the tensor-to-scalar perturbation ratio leads to a larger B-component of the CMB polarization, thus making the prospects for future detection much more promising. The other important consequence of the considered model is a higher energy scale of inflation and hence higher reheating temperature compared to a simple inflation.Comment: 9 pages, 1 figure and references are added, discussion is slightly extended, published versio

    Low-scale Quintessential Inflation

    Get PDF
    In quintessential inflationary model, the same master field that drives inflation becomes, later on, the dynamical source of the (present) accelerated expansion. Quintessential inflationary models require a curvature scale at the end of inflation around 106MP10^{-6}M_{\rm P} in order to explain the large scale fluctuations observed in the microwave sky. If the curvature scale at the end of inflation is much smaller than 106MP10^{-6}M_{\rm P}, the large scale adiabatic mode may be produced thanks to the relaxation of a scalar degree of freedom, which will be generically denoted, according to the recent terminology, as the curvaton field. The production of the adiabatic mode is analysed in detail in the case of the minimal quintessential inflationary model originally proposed by Peebles and Vilenkin.Comment: 25 pages; 5 figure

    Tracking Curvaton(s)?

    Full text link
    The ratio of the curvaton energy density to that of the dominant component of the background sources may be constant during a significant period in the evolution of the Universe. The possibility of having tracking curvatons, whose decay occurs prior to the nucleosynthesis epoch, is studied. It is argued that the tracking curvaton dynamics is disfavoured since the value of the curvature perturbations prior to curvaton decay is smaller than the value required by observations. It is also argued, in a related context, that the minimal inflationary curvature scale compatible with the curvaton paradigm may be lowered in the case of low-scale quintessential inflation.Comment: 20 pages, 4figure

    Holographic bounds on the UV cutoff scale in inflationary cosmology

    Full text link
    We discuss how holographic bounds can be applied to the quantum fluctuations of the inflaton. In general the holographic principle will lead to a bound on the UV cutoff scale of the effective theory of inflation, but it will depend on the coarse-graining prescription involved in calculating the entropy. We propose that the entanglement entropy is a natural measure of the entropy of the quantum perturbations, and show which kind of bound on the cutoff it leads to. Such bounds are related to whether the effects of new physics will show up in the CMB.Comment: 19 pages, 2 figures;(V3):Comments and references adde

    Complex hydrides for hydrogen storage - New perspectives

    Get PDF
    Since the 1970s, hydrogen has been considered as a possible energy carrier for the storage of renewable energy. The main focus has been on addressing the ultimate challenge: eveloping an environmentally friendly successor for gasoline. This very ambitious goal has not yet been fully reached, as discussed in this review, but a range of new lightweight hydrogen-ontaining materials has been discovered with fascinating properties. State-of-the-art and future perspectives for hydrogen-containing solids will be discussed, with a focus on metal borohydrides, which reveal significant structural flexibility and may have a range of new interesting properties combined with very high hydrogen densities

    Curvatons in Supersymmetric Models

    Full text link
    We study the curvaton scenario in supersymmetric framework paying particular attention to the fact that scalar fields are inevitably complex in supersymmetric theories. If there are more than one scalar fields associated with the curvaton mechanism, isocurvature (entropy) fluctuations between those fields in general arise, which may significantly affect the properties of the cosmic density fluctuations. We examine several candidates for the curvaton in the supersymmetric framework, such as moduli fields, Affleck-Dine field, FF- and DD-flat directions, and right-handed sneutrino. We estimate how the isocurvature fluctuations generated in each case affect the cosmic microwave background angular power spectrum. With the use of the recent observational result of the WMAP, stringent constraints on the models are derived and, in particular, it is seen that large fraction of the parameter space is excluded if the Affleck-Dine field plays the role of the curvaton field. Natural and well-motivated candidates of the curvaton are also listed.Comment: 34 pages, 5 figure
    corecore