369 research outputs found

    Vacancy-assisted domain-growth in asymmetric binary alloys: a Monte Carlo study

    Full text link
    A Monte Carlo simulation study of the vacancy-assisted domain-growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term, not considered in previous works. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x=1/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.Comment: 21 pages, 9 figures, accepted for publication in Phys. Rev.

    Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis

    Full text link
    We recently reported a new measurement of the electron's electric dipole moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more detailed description of the methods used to make this measurement, along with a fuller analysis of the data. We show how our methods isolate the electric dipole moment from imperfections in the experiment that might mimic it. We describe the systematic errors that we discovered, and the small corrections that we made to account for these. By making a set of additional measurements with greatly exaggerated experimental imperfections, we find upper bounds on possible uncorrected systematic errors which we use to determine the systematic uncertainty in the measurement. We also calculate the size of some systematic effects that have been important in previous electric dipole moment measurements, such as the motional magnetic field effect and the geometric phase, and show them to be negligibly small in the present experiment. Our result is consistent with an electric dipole moment of zero, so we provide upper bounds to its size at various confidence levels. Finally, we review the prospects for future improvements in the precision of the experiment.Comment: 35 pages, 15 figure

    Franck-Condon Factors and Radiative Lifetime of the A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} Transition of Ytterbium Monoflouride, YbF

    Full text link
    The fluorescence spectrum resulting from laser excitation of the A^{2}\Pi_{1/2} - X^{2}\Sigma^{+} (0,0) band of ytterbium monofluoride, YbF, has been recorded and analyzed to determine the Franck-Condon factors. The measured values are compared with those predicted from Rydberg-Klein-Rees (RKR) potential energy curves. From the fluorescence decay curve the radiative lifetime of the A^{2}\Pi_{1/2} state is measured to be 28\pm2 ns, and the corresponding transition dipole moment is 4.39\pm0.16 D. The implications for laser cooling YbF are discussed.Comment: 5 pages, 5 figure

    Thermomechanical couplings in shape memory alloy materials

    Get PDF
    In this work we address several theoretical and computational issues which are related to the thermomechanical modeling of shape memory alloy materials. More specifically, in this paper we revisit a non-isothermal version of the theory of large deformation generalized plasticity which is suitable for describing the multiple and complex mechanisms occurring in these materials during phase transformations. We also discuss the computational implementation of a generalized plasticity based constitutive model and we demonstrate the ability of the theory in simulating the basic patterns of the experimentally observed behavior by a set of representative numerical examples

    Evolution of Microstructure and Texture during Warm Rolling Of a Duplex Steel

    Get PDF
    The effect of warm rolling on the evolution of microstructure and texture in a duplex stainless steel (DSS) was investigated. For this purpose, a DSS steel was warm rolled up to 90 pct reduction in thickness at 498 K, 698 K, and 898 K (225 °C, 425 °C, and 625 °C). The microstructure with an alternate arrangement of deformed ferrite and austenite bands was observed after warm rolling; however, the microstructure after 90 pct warm rolling at 498 K and 898 K (225 °C and 625 °C) was more lamellar and uniform as compared to the rather fragmented and inhomogeneous structure observed after 90 pct warm rolling at 698 K (425 °C). The texture of ferrite in warm-rolled DSS was characterized by the presence of the RD (〈011〉//RD) and ND (〈111〉//ND) fibers. However, the texture of ferrite in DSS warm rolled at 698 K (425 °C) was distinctly different having much higher fraction of the RD-fiber components than that of the ND-fiber components. The texture and microstructural differences in ferrite in DSS warm rolled at different temperatures could be explained by the interaction of carbon atoms with dislocations. In contrast, the austenite in DSS warm rolled at different temperatures consistently showed pure metal- or copper-type deformation texture which was attributed to the increase in stacking fault energy at the warm-rolling temperatures. It was concluded that the evolution of microstructure and texture of the two constituent phases in DSS was greatly affected by the temperature of warm rolling, but not significantly by the presence of the other phas

    The synthesis of acetylcholine by plants

    Full text link

    Cognitive and psychological science insights to improve climate change data visualization

    Get PDF
    Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics

    Supporting dynamic change detection: using the right tool for the task

    Get PDF
    Detecting task-relevant changes in a visual scene is necessary for successfully monitoring and managing dynamic command and control situations. Change blindness—the failure to notice visual changes—is an important source of human error. Change History EXplicit (CHEX) is a tool developed to aid change detection and maintain situation awareness; and in the current study we test the generality of its ability to facilitate the detection of changes when this subtask is embedded within a broader dynamic decision-making task. A multitasking air-warfare simulation required participants to perform radar-based subtasks, for which change detection was a necessary aspect of the higher-order goal of protecting one’s own ship. In this task, however, CHEX rendered the operator even more vulnerable to attentional failures in change detection and increased perceived workload. Such support was only effective when participants performed a change detection task without concurrent subtasks. Results are interpreted in terms of the NSEEV model of attention behavior (Steelman, McCarley, & Wickens, Hum. Factors 53:142–153, 2011; J. Exp. Psychol. Appl. 19:403–419, 2013), and suggest that decision aids for use in multitasking contexts must be designed to fit within the available workload capacity of the user so that they may truly augment cognition
    corecore