198 research outputs found

    Sec24D-Dependent Transport of Extracellular Matrix Proteins Is Required for Zebrafish Skeletal Morphogenesis

    Get PDF
    Protein transport from endoplasmic reticulum (ER) to Golgi is primarily conducted by coated vesicular carriers such as COPII. Here, we describe zebrafish bulldog mutations that disrupt the function of the cargo adaptor Sec24D, an integral component of the COPII complex. We show that Sec24D is essential for secretion of cartilage matrix proteins, whereas the preceding development of craniofacial primordia and pre-chondrogenic condensations does not depend on this isoform. Bulldog chondrocytes fail to secrete type II collagen and matrilin to extracellular matrix (ECM), but membrane bound receptor β1-Integrin and Cadherins appear to leave ER in Sec24D-independent fashion. Consequently, Sec24D-deficient cells accumulate proteins in the distended ER, although a subset of ER compartments and Golgi complexes as visualized by electron microscopy and NBD C6-ceramide staining appear functional. Consistent with the backlog of proteins in the ER, chondrocytes activate the ER stress response machinery and significantly upregulate BiP transcription. Failure of ECM secretion hinders chondroblast intercalations thus resulting in small and malformed cartilages and severe craniofacial dysmorphology. This defect is specific to Sec24D mutants since knockdown of Sec24C, a close paralog of Sec24D, does not result in craniofacial cartilage dysmorphology. However, craniofacial development in double Sec24C/Sec24D-deficient animals is arrested earlier than in bulldog/sec24d, suggesting that Sec24C can compensate for loss of Sec24D at initial stages of chondrogenesis, but Sec24D is indispensable for chondrocyte maturation. Our study presents the first developmental perspective on Sec24D function and establishes Sec24D as a strong candidate for cartilage maintenance diseases and craniofacial birth defects

    MYH3-associated distal arthrogryposis zebrafish model is normalized with para-aminoblebbistatin

    Get PDF
    Distal arthrogryposis (DA) is group of syndromes characterized by congenital joint contractures. Treatment development is hindered by the lack of vertebrate models. Here, we describe a zebrafish model in which a common MYH3 missense mutation (R672H) was introduced into the orthologous zebrafish gene smyhc1 (slow myosin heavy chain 1) (R673H). We simultaneously created a smyhc1 null allele (smyhc

    Resolving early mesoderm diversification through single-cell expression profiling.

    Get PDF
    In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1(+) mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.We thank M. de Bruijn, A. Martinez-Arias, J. Nichols and C. Mulas for discussion, the Cambridge Institute for Medical Research Flow Cytometry facility for their expertise in single-cell index sorting, and S. Lorenz from the Sanger Single Cell Genomics Core for supervising purification of Tal1−/− sequencing libraries. ChIP-seq reads were processed by R. Hannah. Research in the authors’ laboratories is supported by the Medical Research Council, Cancer Research UK, the Biotechnology and Biological Sciences Research Council, Bloodwise, the Leukemia and Lymphoma Society, and the Sanger-EBI Single Cell Centre, and by core support grants from the Wellcome Trust to the Cambridge Institute for Medical Research and Wellcome Trust - MRC Cambridge Stem Cell Institute and by core funding from Cancer Research UK and the European Molecular Biology Laboratory. Y.T. was supported by a fellowship from the Japan Society for the Promotion of Science. W.J. is a Wellcome Trust Clinical Research Fellow. A.S. is supported by the Sanger-EBI Single Cell Centre. This work was funded as part of Wellcome Trust Strategic Award 105031/D/14/Z ‘Tracing early mammalian lineage decisions by single-cell genomics’ awarded to W. Reik, S. Teichmann, J. Nichols, B. Simons, T. Voet, S. Srinivas, L. Vallier, B. Göttgens and J. Marioni.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1863

    Markers of Antioxidant Defense in Patients with Type 2 Diabetes

    Get PDF
    Aims. Diabetes is considered a state of increased oxidative stress. This study evaluates blood concentrations of selected markers of antioxidant defense in patients with type 2 diabetes. Methods. The study included 80 type 2 diabetes patients and 79 apparently healthy controls. Measured markers included ferric reducing ability of plasma (FRAP), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), -glutamyltransferase (GGT) and uric acid serum, and plasma and/or hemolysate levels. Results. FRAP, uric acid, CRP, and GGT levels were significantly higher in patients with diabetes. Plasma and hemolysate GR was significantly higher whereas GPx activity was significantly lower in patients with diabetes. There were no significant differences in antioxidant defense markers between patients with and without chronic diabetes complications. Fasting serum glucose correlated with plasma GPx, plasma and hemolysate GR, FRAP, and serum GGT, and HbA1c correlated with serum GGT. Only FRAP and serum uric acid were significantly higher in obese (BMI > 30 kg/m 2 ) patients with diabetes than in nonobese patients. Conclusions. Some components of antioxidant defense such as GR, uric acid, and GGT are increased in patients with type 2 diabetes. However, the whole system cannot compensate for an enhanced production of ROS as reflected by the trend toward decreased erythrocytes GSH

    Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe — recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency

    Get PDF
    Wstęp: Wyniki badań z ostatnich lat dokumentują wiele korzyści wynikających z działania witaminy D na organizm człowieka na wszystkichetapach jego życia. Większość badań epidemiologicznych sugeruje, że niedobór witaminy D jest powszechny wśród mieszkańców EuropyŚrodkowej. Naturalną konsekwencją tej sytuacji jest konieczność ciągłego uświadamiania społeczeństwu oraz środowisku medycznemu,jaką rolę odgrywa witamina D w rozwoju i funkcjonowaniu organizmu ludzkiego.Metody: Na podstawie przeglądu danych literaturowych Polski Zespół Wielodyscyplinarny opracował tezy dotyczące zasad suplementacjiwitaminą D, które przesłano do członków Komitetu Naukowego konferencji „Witamina D — minimum, maksimum, optimum”,19–20 Październik, 2012, Warszawa. W trakcie powyższej konferencji z udziałem 550 delegatów oraz Ekspertów różnych dziedzin medycynyomówiono i przedyskutowano propozycje wytycznych suplementacji witaminą D populacji Europy Środkowej.Wyniki: W efekcie przeprowadzonych dyskusji Zespół Ekspertów opracował wytyczne suplementacji witaminą D dla wszystkich grupwiekowych populacji Europy Środkowej. Określono również kryteria diagnostyczne charakteryzujące stan zaopatrzenia organizmu w witaminę D: deficyt witaminy D ustalono jako stężenie 25(OH)D < 20 ng/mL (< 50 nmol/L)], suboptymalne zaopatrzenie jako stężenie25(OH)D wynoszące 20–30 ng/mL (50–75 nmol/L), a stężenie 30–50 ng/mL (75–125 nmol/L) uznano za docelowe dla zapewnienia efektuplejotropowego witaminy D.Wnioski: Poprawa obecnego stanu zaopatrzenia witaminy D w grupach dzieci, młodzieży, osób aktywnych zawodowo i seniorówpowinna zostać włączona do priorytetów polityki zdrowotnej społeczeństw Europy Środkowej.Introduction: Adequate Vitamin D intake and its concentration in serum are important for bone health and calcium–phosphate metabolismas well as for optimal function of many organs and tissues. Documented trends in lifestyle, nutritional habits and physical activityappear to be associated with moderate or severe Vitamin D deficits resulting in health problems. Most epidemiological studies suggest thatVitamin D deficiency is prevalent among Central European populations. Concern about this problem led to the organising of a conferencefocused on overcoming Vitamin D deficiency.Methods: After reviewing the epidemiological evidence and relevant literature, a Polish multidisciplinary group formulated theses onrecommendations for Vitamin D screening and supplementation in the general population. These theses were subsequently sent to ScientificCommittee members of the ‘Vitamin D — minimum, maximum, optimum’ conference for evaluation based on a ten-point scale.With 550 international attendees, the meeting ‘Vitamin D — minimum, maximum, optimum’ was held on October 19–20, 2012 in Warsaw(Poland). Most recent scientific evidence of both skeletal and non-skeletal effects of Vitamin D as well as the results of panellists’ votingwere reviewed and discussed during eight plenary sessions and two workshops.Results: Based on many polemical discussions, including post-conference networking, the key opinion leaders established ranges ofserum 25-hydroxyVitamin D concentration indicating Vitamin D deficiency [< 20 ng/mL (< 50 nmol/L)], suboptimal status [20–30 ng/mL(50–75 nmol/L)], and target concentration for optimal Vitamin D effects [30–50 ng/mL (75–125 nmol/L)]. General practical guidelines regardingsupplementation and updated recommendations for prophylactic Vitamin D intakes in Central European neonates, infants, childrenand adolescents as well as in adults (including recommendations for pregnant and breastfeeding women and the elderly) were developed.Conclusions: Improving the Vitamin D status of children, adolescents, adults and the elderly must be included in the priorities of physicians,healthcare professionals and healthcare regulating bodies. The present paper offers elaborated consensus on supplementationguidance and population strategies for Vitamin D in Central Europe

    The Tumor Suppressor PRDM5 Regulates Wnt Signaling at Early Stages of Zebrafish Development

    Get PDF
    PRDM genes are a family of transcriptional regulators that modulate cellular processes such as differentiation, cell growth and apoptosis. Some family members are involved in tissue or organ maturation, and are differentially expressed in specific phases of embryonic development. PRDM5 is a recently identified family member that functions as a transcriptional repressor and behaves as a putative tumor suppressor in different types of cancer. Using gene expression profiling, we found that transcriptional targets of PRDM5 in human U2OS cells include critical genes involved in developmental processes, and specifically in regulating wnt signaling. We therefore assessed PRDM5 function in vivo by performing loss-of-function and gain-of-function experiments in zebrafish embryos. Depletion of prdm5 resulted in impairment of morphogenetic movements during gastrulation and increased the occurrence of the masterblind phenotype in axin+/− embryos, characterized by the loss of eyes and telencephalon. Overexpression of PRDM5 mRNA had opposite effects on the development of anterior neural structures, and resulted in embryos with a shorter body axis due to posterior truncation, a bigger head and abnormal somites. In situ hybridization experiments aimed at analyzing the integrity of wnt pathways during gastrulation at the level of the prechordal plate revealed inhibition of non canonical PCP wnt signaling in embryos overexpressing PRDM5, and over-activation of wnt/β-catenin signaling in embryos lacking Prdm5. Our data demonstrate that PRDM5 regulates the expression of components of both canonical and non canonical wnt pathways and negatively modulates wnt signaling in vivo

    Fast Homozygosity Mapping and Identification of a Zebrafish ENU-Induced Mutation by Whole-Genome Sequencing

    Get PDF
    Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish

    DEAD-Box Protein Ddx46 Is Required for the Development of the Digestive Organs and Brain in Zebrafish

    Get PDF
    Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46 mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the digestive organs and brain, possibly through the control of pre-mRNA splicing

    Plasma levels of matrix metalloproteinase-2, -3, -10, and tissue inhibitor of metalloproteinase-1 are associated with vascular complications in patients with type 1 diabetes: The EURODIAB Prospective Complications Study

    Get PDF
    Impaired regulation of extracellular matrix remodeling by matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase (TIMP) may contribute to vascular complications in patients with type 1 diabetes. We investigated associations between plasma MMP-1, -2, -3, -9, -10 and TIMP-1, and cardiovascular disease (CVD) or microvascular complications in type 1 diabetic patients. We also evaluated to which extent these associations could be explained by low-grade inflammation (LGI) or endothelial dysfunction (ED). Methods: 493 type 1 diabetes patients (39.5 ± 9.9 years old, 51% men) from the EURODIAB Prospective Complications Study were included. Linear regression analysis was applied to investigate differences in plasma levels of MMP-1, -2, -3, -9, -10, and TIMP-1 between patients with and without CVD, albuminuria or retinopathy. All analyses were adjusted for age, sex, duration of diabetes, Hba1c and additionally for other cardiovascular risk factors including LGI and ED. Results: Patients with CVD (n = 118) showed significantly higher levels of TIMP-1 [β = 0.32 SD (95%CI: 0.12; 0.52)], but not of MMPs, than patients without CVD (n = 375). Higher plasma levels of MMP-2, MMP-3, MMP-10 and TIMP-1 were associated with higher levels of albuminuria (p-trends were 0.028, 0.004, 0.005 and 0.001, respectively). Severity of retinopathy was significantly associated with higher levels of MMP-2 (p-trend = 0.017). These associations remained significant after further adjustment for markers of LGI and ED. Conclusions: These data support the hypothesis that impaired regulation of matrix remodeling by actions of MMP-2, -3 and-10 and TIMP-1 contributes to the pathogenesis of vascular complications in type 1 diabetes

    Pair-Wise Regulation of Convergence and Extension Cell Movements by Four Phosphatases via RhoA

    Get PDF
    Various signaling pathways regulate shaping of the main body axis during early vertebrate development. Here, we focused on the role of protein-tyrosine phosphatase signaling in convergence and extension cell movements. We identified Ptpn20 as a structural paralogue of PTP-BL and both phosphatases were required for normal gastrulation cell movements. Interestingly, knockdowns of PTP-BL and Ptpn20 evoked similar developmental defects as knockdown of RPTPα and PTPε. Co-knockdown of RPTPα and PTP-BL, but not Ptpn20, had synergistic effects and conversely, PTPε and Ptpn20, but not PTP-BL, cooperated, demonstrating the specificity of our approach. RPTPα and PTPε knockdowns were rescued by constitutively active RhoA, whereas PTP-BL and Ptpn20 knockdowns were rescued by dominant negative RhoA. Consistently, RPTPα and PTP-BL had opposite effects on RhoA activation, both in a PTP-dependent manner. Downstream of the PTPs, we identified NGEF and Arhgap29, regulating RhoA activation and inactivation, respectively, in convergence and extension cell movements. We propose a model in which two phosphatases activate RhoA and two phosphatases inhibit RhoA, resulting in proper cell polarization and normal convergence and extension cell movements
    corecore