323 research outputs found

    Optomechanical deformation and strain in elastic dielectrics

    Full text link
    Light forces induced by scattering and absorption in elastic dielectrics lead to local density modulations and deformations. These perturbations in turn modify light propagation in the medium and generate an intricate nonlinear response. We generalise an analytic approach where light propagation in one-dimensional media of inhomogeneous density is modelled as a result of multiple scattering between polarizable slices. Using the Maxwell stress tensor formalism we compute the local optical forces and iteratively approach self-consistent density distributions where the elastic back-action balances gradient- and scattering forces. For an optically trapped dielectric we derive the nonlinear dependence of trap position, stiffness and total deformation on the object's size and field configuration. Generally trapping is enhanced by deformation, which exhibits a periodic change between stretching and compression. This strongly deviates from qualitative expectations based on the change of photon momentum of light crossing the surface of a dielectric. We conclude that optical forces have to be treated as volumetric forces and that a description using the change of photon momentum at the surface of a medium is inappropriate

    RsmW, Pseudomonas aeruginosa small non-coding RsmA-binding RNA upregulated in biofilm versus planktonic growth conditions

    Get PDF
    BACKGROUND: Biofilm development, specifically the fundamentally adaptive switch from acute to chronic infection phenotypes, requires global regulators and small non-coding regulatory RNAs (sRNAs). This work utilized RNA-sequencing (RNA-seq) to detect sRNAs differentially expressed in Pseudomonas aeruginosa biofilm versus planktonic state. RESULTS: A computational algorithm was devised to detect and categorize sRNAs into 5 types: intergenic, intragenic, 5′-UTR, 3′-UTR, and antisense. Here we report a novel RsmY/RsmZ-type sRNA, termed RsmW, in P. aeruginosa up-transcribed in biofilm versus planktonic growth. RNA-Seq, 5’-RACE and Mfold predictions suggest RsmW has a secondary structure with 3 of 7 GGA motifs located on outer stem loops. Northern blot revealed two RsmW binding bands of 400 and 120 bases, suggesting RsmW is derived from the 3’-UTR of the upstream hypothetical gene, PA4570. RsmW expression is elevated in late stationary versus logarithmic growth phase in PB minimal media, at higher temperatures (37°C versus 28°C), and in both gacA and rhlR transposon mutants versus wild-type. RsmW specifically binds to RsmA protein in vitro and restores biofilm production and reduces swarming in an rsmY/rsmZ double mutant. PA4570 weakly resembles an RsmA/RsmN homolog having 49% and 51% similarity, and 16% and 17% identity to RsmA and RsmN amino acid sequences, respectively. PA4570 was unable to restore biofilm and swarming phenotypes in ΔrsmA deficient strains. CONCLUSION: Collectively, our study reveals an interesting theme regarding another sRNA regulator of the Rsm system and further unravels the complexities regulating adaptive responses for Pseudomonas species

    Synthesis and characterization of triangulene

    Get PDF
    Triangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized1. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons2. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity1, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core3, 4 and verification of the triplet ground state via electron paramagnetic resonance measurements5. Here we show the on-surface generation of unsubstituted triangulene that consists of six fused benzene rings. The tip of a combined scanning tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor molecules. STM measurements in combination with density functional theory (DFT) calculations confirmed that triangulene keeps its free-molecule properties on the surface, whereas AFM measurements resolved its planar, threefold symmetric molecular structure. The unique topology of such non-Kekulé hydrocarbons results in open-shell π-conjugated graphene fragments6 that give rise to high-spin ground states, potentially useful in organic spintronic devices7, 8. Our generation method renders manifold experiments possible to investigate triangulene and related open-shell fragments at the single-molecule level

    Predictive value and interrater reliability of mental status and mobility assessment in the emergency department

    Get PDF
    Aim: To investigate the predictive value of both mental status, assessed with the AVPUC (Alert, responds to Voice, responds to Pain, Unresponsive, and new Confusion) scale, and mobility assessments, and their interrater reliability (IRR) between triage clinicians and a research team. Method: Prospective study of consecutive patients who presented to an ED. Mental status and mobility were assessed by triage clinicians and by a dedicated research team. Results: 4,191 patients were included. After adjustment for age and sex, patients with altered mental status have an odds ratio of 6.55 [4.09–10.24] to be admitted in the ICU and an odds ratio of 21.16 [12.06–37.01] to die within 30 days; patients with impaired mobility have an odds ratio of 7.08 [4.60–11.12] to be admitted in the ICU and an odds ratio of 12.87 [5.93–32.30] to die within 30 days. The kappa coefficient between triage clinicians and the research team for mental status assessment was 0.75, and 0.80 for mobility. Conclusion: Assessment of mental status by the AVPUC scale, and mobility by a simple dichotomous scale are suitable for ED triage. Both altered mental status and impaired mobility are associated with adverse outcomes. Mental status and mobility assessment have good interrater reliability.</p

    The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing

    Get PDF
    In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS). By the use of rapid amplification of cDNA ends (5′-RACE) we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms

    Genomic SELEX for Hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts

    Get PDF
    An unexpectedly high number of regulatory RNAs have been recently discovered that fine-tune the function of genes at all levels of expression. We employed Genomic SELEX, a method to identify protein-binding RNAs encoded in the genome, to search for further regulatory RNAs in Escherichia coli. We used the global regulator protein Hfq as bait, because it can interact with a large number of RNAs, promoting their interaction. The enriched SELEX pool was subjected to deep sequencing, and 8865 sequences were mapped to the E. coli genome. These short sequences represent genomic Hfq-aptamers and are part of potential regulatory elements within RNA molecules. The motif 5′-AAYAAYAA-3′ was enriched in the selected RNAs and confers low-nanomolar affinity to Hfq. The motif was confirmed to bind Hfq by DMS footprinting. The Hfq aptamers are 4-fold more frequent on the antisense strand of protein coding genes than on the sense strand. They were enriched opposite to translation start sites or opposite to intervening sequences between ORFs in operons. These results expand the repertoire of Hfq targets and also suggest that Hfq might regulate the expression of a large number of genes via interaction with cis-antisense RNAs

    The RNA Chaperone Hfq Is Important for Growth and Stress Tolerance in Francisella novicida

    Get PDF
    The RNA-binding protein Hfq is recognized as an important regulatory factor in a variety of cellular processes, including stress resistance and pathogenesis. Hfq has been shown in several bacteria to interact with small regulatory RNAs and act as a post-transcriptional regulator of mRNA stability and translation. Here we examined the impact of Hfq on growth, stress tolerance, and gene expression in the intracellular pathogen Francisella novicida. We present evidence of Hfq involvement in the ability of F. novicida to tolerate several cellular stresses, including heat-shock and oxidative stresses, and alterations in hfq gene expression under these conditions. Furthermore, expression of numerous genes, including several associated with virulence, is altered in a hfq mutant strain suggesting they are regulated directly or indirectly by Hfq. Strikingly, we observed a delayed entry into stationary phase and increased biofilm formation in the hfq mutant. Together, these data demonstrate a critical role for Hfq in F. novicida growth and survival

    A Role for the RNA Chaperone Hfq in Controlling Adherent-Invasive Escherichia coli Colonization and Virulence

    Get PDF
    Adherent-invasive Escherichia coli (AIEC) has been linked with the onset and perpetuation of inflammatory bowel diseases. The AIEC strain LF82 was originally isolated from an ileal biopsy from a patient with Crohn's disease. The pathogenesis of LF82 results from its abnormal adherence to and subsequent invasion of the intestinal epithelium coupled with its ability to survive phagocytosis by macrophages once it has crossed the intestinal barrier. To gain further insight into AIEC pathogenesis we employed the nematode Caenorhabditis elegans as an in vivo infection model. We demonstrate that AIEC strain LF82 forms a persistent infection in C. elegans, thereby reducing the host lifespan significantly. This host killing phenotype was associated with massive bacterial colonization of the nematode intestine and damage to the intestinal epithelial surface. C. elegans killing was independent of known LF82 virulence determinants but was abolished by deletion of the LF82 hfq gene, which encodes an RNA chaperone involved in mediating posttranscriptional gene regulation by small non-coding RNAs. This finding reveals that important aspects of LF82 pathogenesis are controlled at the posttranscriptional level by riboregulation. The role of Hfq in LF82 virulence was independent of its function in regulating RpoS and RpoE activity. Further, LF82Δhfq mutants were non-motile, impaired in cell invasion and highly sensitive to various chemical stress conditions, reinforcing the multifaceted function of Hfq in mediating bacterial adaptation. This study highlights the usefulness of simple non-mammalian infection systems for the identification and analysis of bacterial virulence factors

    A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes

    Get PDF
    In recent years, more than 60 small RNAs (sRNAs) have been identified in the gram-positive human pathogen Listeria monocytogenes, but their putative roles and mechanisms of action remain largely unknown. The sRNA LhrA was recently shown to be a post-transcriptional regulator of a single gene, lmo0850, which encodes a small protein of unknown function. LhrA controls the translation and degradation of the lmo0850 mRNA by an antisense mechanism, and it depends on the RNA chaperone Hfq for efficient binding to its target. In the present study, we sought to gain more insight into the functional role of LhrA in L. monocytogenes. To this end, we determined the effects of LhrA on global-wide gene expression. We observed that nearly 300 genes in L. monocytogenes are either positively or negatively affected by LhrA. Among these genes, we identified lmo0302 and chiA as direct targets of LhrA, thus establishing LhrA as a multiple target regulator. Lmo0302 encodes a hypothetical protein with no known function, whereas chiA encodes one of two chitinases present in L. monocytogenes. We show here that LhrA acts as a post-transcriptional regulator of lmo0302 and chiA by interfering with ribosome recruitment, and we provide evidence that both LhrA and Hfq act to down-regulate the expression of lmo0302 and chiA. Furthermore, in vitro binding experiments show that Hfq stimulates the base pairing of LhrA to chiA mRNA. Finally, we demonstrate that LhrA has a negative effect on the chitinolytic activity of L. monocytogenes. In marked contrast to this, we found that Hfq has a stimulating effect on the chitinolytic activity, suggesting that Hfq plays multiple roles in the complex regulatory pathways controlling the chitinases of L. monocytogenes

    Nanoelectropulse-driven membrane perturbation and small molecule permeabilization

    Get PDF
    BACKGROUND: Nanosecond, megavolt-per-meter pulsed electric fields scramble membrane phospholipids, release intracellular calcium, and induce apoptosis. Flow cytometric and fluorescence microscopy evidence has associated phospholipid rearrangement directly with nanoelectropulse exposure and supports the hypothesis that the potential that develops across the lipid bilayer during an electric pulse drives phosphatidylserine (PS) externalization. RESULTS: In this work we extend observations of cells exposed to electric pulses with 30 ns and 7 ns durations to still narrower pulse widths, and we find that even 3 ns pulses are sufficient to produce responses similar to those reported previously. We show here that in contrast to unipolar pulses, which perturb membrane phospholipid order, tracked with FM1-43 fluorescence, only at the anode side of the cell, bipolar pulses redistribute phospholipids at both the anode and cathode poles, consistent with migration of the anionic PS head group in the transmembrane field. In addition, we demonstrate that, as predicted by the membrane charging hypothesis, a train of shorter pulses requires higher fields to produce phospholipid scrambling comparable to that produced by a time-equivalent train of longer pulses (for a given applied field, 30, 4 ns pulses produce a weaker response than 4, 30 ns pulses). Finally, we show that influx of YO-PRO-1, a fluorescent dye used to detect early apoptosis and activation of the purinergic P2X(7 )receptor channels, is observed after exposure of Jurkat T lymphoblasts to sufficiently large numbers of pulses, suggesting that membrane poration occurs even with nanosecond pulses when the electric field is high enough. Propidium iodide entry, a traditional indicator of electroporation, occurs with even higher pulse counts. CONCLUSION: Megavolt-per-meter electric pulses as short as 3 ns alter the structure of the plasma membrane and permeabilize the cell to small molecules. The dose responses of cells to unipolar and bipolar pulses ranging from 3 ns to 30 ns duration support the hypothesis that a field-driven charging of the membrane dielectric causes the formation of pores on a nanosecond time scale, and that the anionic phospholipid PS migrates electrophoretically along the wall of these pores to the external face of the membrane
    corecore