398 research outputs found
New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels : Preliminary results in the RRR
The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70's, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its "High Priority Request List" and its report WPEC-26 that the capture cross section of 242Pu should be measured with an accuracy of at least 7-12% in the neutron energy range between 500 eV and 500 keV. This work presents a brief description of the measurement performed at n-TOF-EAR1, the data reduction process and the first ToF capture measurement on this isotope in the last 40 years, providing preliminary individual resonance parameters beyond the current energy limits in the evaluations, as well as a preliminary set of average resonance parameters
Possible Odd-Frequency Superconductivity in Strong-Coupling Electron-Phonon Systems
A possibility of the odd-frequency pairing in the strong-coupling
electron-phonon systems is discussed. Using the Holstein-Hubbard model, we
demonstrate that the anomalously soft Einstein mode with the frequency
( is the order of the renormalized
bandwidth) mediates the s-wave odd-frequency triplet pairing against the
ordinary even-frequency singlet pairing. It is necessary for the emergence of
the odd-frequency pairing that the pairing interaction is strongly retarded as
well as the strong coupling, since the pairing interaction for the
odd-frequency pairing is effective only in the diagonal scattering channel,
with
. Namely, the odd-frequency
superconductivity is realized in the opposite limit of the original BCS theory.
The Ginzburg-Landau analysis in the strong-coupling region shows that the
specific-heat discontinuity and the slope of the temperature dependence of the
superfluid density can be quite small as compared with the BCS values,
depending on the ratio of the transition temperature and .Comment: 6 pages, 7 figures, submitted to J. Phys. Soc. Jp
Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -
Superconductivity is a phenomenon where the macroscopic quantum coherence
appears due to the pairing of electrons. This offers a fascinating arena to
study the physics of broken gauge symmetry. However, the important symmetries
in superconductors are not only the gauge invariance. Especially, the symmetry
properties of the pairing, i.e., the parity and spin-singlet/spin-triplet,
determine the physical properties of the superconducting state. Recently it has
been recognized that there is the important third symmetry of the pair
amplitude, i.e., even or odd parity with respect to the frequency. The
conventional uniform superconducting states correspond to the even-frequency
pairing, but the recent finding is that the odd-frequency pair amplitude arises
in the spatially non-uniform situation quite ubiquitously. Especially, this is
the case in the Andreev bound state (ABS) appearing at the surface/interface of
the sample. The other important recent development is on the nontrivial
topological aspects of superconductors. As the band insulators are classified
by topological indices into (i) conventional insulator, (ii) quantum Hall
insulator, and (iii) topological insulator, also are the gapped
superconductors. The influence of the nontrivial topology of the bulk states
appears as the edge or surface of the sample. In the superconductors, this
leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the
superconductors are the place where the symmetry and topology meet each other
which offer the stage of rich physics. In this review, we discuss the physics
of ABS from the viewpoint of the odd-frequency pairing, the topological
bulk-edge correspondence, and the interplay of these two issues. It is
described how the symmetry of the pairing and topological indices determines
the absence/presence of the ZEABS, its energy dispersion, and properties as the
Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde
Time-of-flight and activation experiments on 147Pm and 171Tm for astrophysics
The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n,γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm and 171Tm have been produced by irradiation of stable isotopes at the ILL high flux reactor. Neutron capture on 146Nd and 170Er at the reactor was followed by beta decay and the resulting matrix was purified via radiochemical separation at PSI. The radioactive targets have been used for time-of-flight measurements at the CERN n-TOF facility using the 19 and 185 m beam lines during 2014 and 2015. The capture cascades were detected using a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross section of 147Pm and 171Tm. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity 30 keV quasi-Maxwellian flux of neutrons will be performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The status of these experiments and preliminary results will be presented and discussed as well
The measurement programme at the neutron time-of-flight facility n-TOF at CERN
Neutron-induced reaction cross sections are important for a wide variety of research fields ranging from the study of nuclear level densities, nucleosynthesis to applications of nuclear technology like design, and criticality and safety assessment of existing and future nuclear reactors, radiation dosimetry, medical applications, nuclear waste transmutation, accelerator-driven systems and fuel cycle investigations. Simulations and calculations of nuclear technology applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based both on experimental data and theoretical models. CERN's neutron time-of-flight facility n-TOF has produced a considerable amount of experimental data since it has become fully operational with the start of its scientific measurement programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in 2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental nuclear data activities at n-TOF will be presented
Adhesion and mechanical properties of PDMS-based materials probed with AFM: A review
This work was supported by Russian Science Foundation project grant 18-19-00645 "Adhesion of polymer-based soft materials: from liquid to solid-.Polydimethylsiloxane (PDMS) is the most widely used silicon-based organic polymer, and is particularly known for its unusual rheological properties. PDMS has found extensive usage in various fields ranging from microfluidics and flexible electronics to cosmetics and food industry. In certain applications, like e.g. dry adhesives or dry transfer of 2D materials, adhesive properties of PDMS play crucial role. In this review we focus on probing the mechanical and adhesive properties of PDMS by means of atomic force microscopy (AFM). Main advantages and limitations of AFM-based measurements in comparison to macroscopic tests are discussed.Russian Science Foundation 18-19-00645; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART
Recent results in nuclear astrophysics at the n-TOF facility at CERN
The neutron time of flight (n-TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n-TOF facility are presented
The Nuclear Astrophysics program at n-TOF (CERN)
An important experimental program on Nuclear Astrophysics is being carried out at the n-TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n-TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neutron sources and primordial nucleosynthesis
- …
