404 research outputs found

    Dual regimes of ion migration in high repetition rate femtosecond laser inscribed waveguides

    Get PDF
    Ion migration in high repetition rate femtosecond laser inscribed waveguides is currently being reported in different optical glasses. For the first time we discuss and experimentally demonstrate the presence of two regimes of ion migration found in laser written waveguides. Regime-I, corresponds to the initial waveguide formation mainly via light element migration (in our case atomic weight < 31u), whereas regime-II majorly corresponds to the movement of heavy elements. This behavior brings attention to a problem which has never been analyzed before and that affects laser written active waveguides in which active ions migrate changing their local spectroscopic properties. The migration of active ions may in fact detune the pre-designed optimal values of active photonic devices. This paper experimentally evidences this problem and provides solutions to avert it.Comment: 4 pages, 5 figure

    Integrated waveguides and deterministically positioned nitrogen vacancy centers in diamond created by femtosecond laser writing

    Get PDF
    Diamond's nitrogen vacancy (NV) center is an optically active defect with long spin coherence times, showing great potential for both efficient nanoscale magnetometry and quantum information processing schemes. Recently, both the formation of buried 3D optical waveguides and high quality single NVs in diamond were demonstrated using the versatile femtosecond laser-writing technique. However, until now, combining these technologies has been an outstanding challenge. In this work, we fabricate laser written photonic waveguides in quantum grade diamond which are aligned to within micron resolution to single laser-written NVs, enabling an integrated platform providing deterministically positioned waveguide-coupled NVs. This fabrication technology opens the way towards on-chip optical routing of single photons between NVs and optically integrated spin-based sensing

    Towards a regional ocean forecasting system for the IBI (Iberia-Biscay-Ireland area): developments and improvements within the ECOOP project framework

    Get PDF
    The regional ocean operational system remains a key element in downscaling from large scale (global or basin scale) systems to coastal ones. It enables the transition between systems in which the resolution and the resolved physics are quite different. Indeed, coastal applications need a system to predict local high frequency events (inferior to the day) such as storm surges, while deep sea applications need a system to predict large scale lower frequency ocean features. In the framework of the ECOOP project, a regional system for the Iberia-Biscay-Ireland area has been upgraded from an existing V0 version to a V2. This paper focuses on the improvements from the V1 system, for which the physics are close to a large scale basin system, to the V2 for which the physics are more adapted to shelf and coastal issues. Strong developments such as higher regional physics resolution in the NEMO Ocean General Circulation Model for tides, non linear free surface and adapted vertical mixing schemes among others have been implemented in the V2 version. Thus, regional thermal fronts due to tidal mixing now appear in the latest version solution and are quite well positioned. Moreover, simulation of the stratification in shelf areas is also improved in the V2

    Polarized micro-Raman studies of femtosecond laser written stress-induced optical waveguides in diamond

    Get PDF
    Understanding the physical mechanisms of the refractive index modulation induced by femtosecond laser writing is crucial for tailoring the properties of the resulting optical waveguides. In this work we apply polarized Raman spectroscopy to study the origin of stress-induced waveguides in diamond, produced by femtosecond laser writing. The change in the refractive index induced by the femtosecond laser in the crystal is derived from the measured stress in the waveguides. The results help to explain the waveguide polarization sensitive guiding mechanism, as well as providing a technique for their optimization.Comment: 5 pages, 4 figure

    Characterization of Nb22O54 microrods grown from niobium oxide powders recovered from mine tailings

    Full text link
    In this work, the possibility of using niobium oxide recovered from tailings from the Penouta Sn-Nb-Ta deposit (located at the North of Spain) as starting material for growing microstructures is demonstrated. The properties of the starting material have been studied to understand its crystal structure, quality and purity. Recovered niobium oxide powders are mainly of TT-Nb2O5. These powders have been used to grow Nb22O54 microrods by an evaporation method in an argon atmosphere. Different characterization techniques (X-Ray diffraction, scanning electron microscopy, micro-Raman spectroscopy, luminescence) have been used to determine the properties of Nb22O54 microrods, mainly focusing on the crystal quality and refractive index. The present study opens the way to the transformation of waste (mine tailings) into a material of high technological value as niobium oxide, and its reintroduction into the value chain for a wide range of applications, from coatings to batteries and supercapacitors

    Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype.

    Get PDF
    BACKGROUND: Throughout Asia, there is an unprecedented link between cholangiocarcinoma and infection with the liver fluke Opisthorchis viverrini. Multiple processes, including chronic inflammation and secretion of parasite proteins into the biliary epithelium, drive infection toward cancer. Until now, the mechanism and effects of parasite protein entry into cholangiocytes was unknown. METHODS: Various microscopy techniques were used to identify O. viverrini extracellular vesicles (EVs) and their internalization by human cholangiocytes. Using mass spectrometry we characterized the EV proteome and associated changes in cholangiocytes after EV uptake, and we detected EV proteins in bile of infected hamsters and humans. Cholangiocyte proliferation and interleukin 6 (IL-6) secretion was measured to assess the impact of EV internalization. RESULTS: EVs were identified in fluke culture medium and bile specimens from infected hosts. EVs internalized by cholangiocytes drove cell proliferation and IL-6 secretion and induced changes in protein expression associated with endocytosis, wound repair, and cancer. Antibodies to an O. viverrini tetraspanin blocked EV uptake and IL-6 secretion by cholangiocytes. CONCLUSIONS: This is the first time that EVs from a multicellular pathogen have been identified in host tissues. Our findings imply a role for O. viverrini EVs in pathogenesis and highlight an approach to vaccine development for this infectious cancer.This work was supported by a Project Grant (APP1085309) from the National Health and Medical Research Council of Australia (NHMRC). AL is supported by a NHMRC principal research fellowship. SC was supported by the Thailand Research Fund (TRF)-the Royal Golden Jubilee PhD scholarship (RGJ) through Dr. Banchob Sripa.This is the final version. It was first published by OUP at http://dx.doi.org/10.1093/infdis/jiv29

    Epidemiology of traumatic spinal cord injury in Galicia, Spain: trends over a 20-year period

    Get PDF
    [Abstract] Study design: Observational study with prospective and retrospective monitoring. Objective: To describe the epidemiological and demographic characteristics of traumatic spinal cord injury (TSCI), and to analyze its epidemiological changes. Setting: Unidad de Lesionados Medulares, Complejo Hospitalario Universitario A Coruña, in Galicia (Spain). Methods: The study included patients with TSCI who had been hospitalized between January 1995 and December 2014. Relevant data were extracted from the admissions registry and electronic health record. Results: A total of 1195 patients with TSCI were admitted over the specified period of time; 76.4% male and 23.6% female. Mean patient age at injury was 50.20 years. Causes of injury were falls (54.2%), traffic accidents (37%), sports/leisure-related accidents (3.5%) and other traumatic causes (5.3%). Mean patient age increased significantly over time (from 46.40 to 56.54 years), and the number of cases of TSCI related to traffic accidents decreased (from 44.5% to 23.7%), whereas those linked to falls increased (from 46.9% to 65.6%). The most commonly affected neurological level was the cervical level (54.9%), increasing in the case of levels C1–C4 over time, and the most frequent ASIA (American Spinal Injury Association) grade was A (44.3%). The crude annual incidence rate was 2.17/100 000 inhabitants, decreasing significantly over time at an annual percentage rate change of −1.4%. Conclusions: The incidence rate of TSCI tends to decline progressively. Mean patient age has increased over time and cervical levels C1–C4 are currently the most commonly affected ones. These epidemiological changes will eventually result in adjustments in the standard model of care for TSCI

    Correlative study of structural and optical properties of ZnSe under severe plastic deformation

    Get PDF
    The effect of plastic deformation on the optical and structural properties of ZnSe crystals has been investigated. The optical properties have been monitored by cathodoluminescence measurements as a function of the deformation degree. Remarkable differences in the defect-related emissions from the most severely deformed areas have been encountered. Deformation of the crystal lattice of ZnSe, associated with slip phenomena, has been studied by means of Electron Backscattered Diffraction and micro-Raman spectroscopy. The relation between the deformation and the optical properties of the ZnSe crystals has been described

    Laser writing of coherent colour centres in diamond

    Get PDF
    Optically active point defects in crystals have gained widespread attention as photonic systems that can find use in quantum information technologies [1,2]. However challenges remain in the placing of individual defects at desired locations, an essential element of device fabrication. Here we report the controlled generation of single nitrogen-vacancy (NV) centres in diamond using laser writing [3]. The use of aberration correction in the writing optics allows precise positioning of vacancies within the diamond crystal, and subsequent annealing produces single NV centres with up to 45% success probability, within about 200 nm of the desired position. Selected NV centres fabricated by this method display stable, coherent optical transitions at cryogenic temperatures, a pre-requisite for the creation of distributed quantum networks of solid-state qubits. The results illustrate the potential of laser writing as a new tool for defect engineering in quantum technologies

    Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production

    Full text link
    © 2015 Australian Society for Parasitology Inc. Liver fluke infection caused by Opisthorchis viverrini remains a major public health problem in many parts of Asia including Thailand, Lao PDR, Vietnam and Cambodia, where there is a strikingly high incidence of cholangiocarcinoma (CCA - hepatic cancer of the bile duct epithelium). Among other factors, uptake of O. viverrini excretory/secretory products (OvES) by biliary epithelial cells has been postulated to be responsible for chronic inflammation and proliferation of cholangiocytes, but the mechanisms by which cells internalise O. viverrini excretory/secretory products are still unknown. Herein we incubated normal human cholangiocytes (H69), human cholangiocarcinoma cells (KKU-100, KKU-M156) and human colon cancer (Caco-2) cells with O. viverrini excretory/secretory products and analysed the effects of different endocytic inhibitors to address the mechanism of cellular uptake of ES proteins. Opisthorchis viverrini excretory/secretory products was internalised preferentially by liver cell lines, and most efficiently/rapidly by H69 cells. There was no evidence for trafficking of ES proteins to cholangiocyte organelles, and most of the fluorescence was detected in the cytoplasm. Pretreatment with clathrin inhibitors significantly reduced the uptake of O. viverrini excretory/secretory products, particularly by H69 cells. Opisthorchis viverrini excretory/secretory products induced proliferation of liver cells (H69 and CCA lines) but not intestinal (Caco-2) cells, and proliferation was blocked using inhibitors of the classical endocytic pathways (clathrin and caveolae). Opisthorchis viverrini excretory/secretory products drove IL6 secretion by H69 cells but not Caco-2 cells, and cytokine secretion was significantly reduced by endocytosis inhibitors. This the first known study to address the endocytosis of helminth ES proteins by host epithelial cells and sheds light on the pathways by which this parasite causes one of the most devastating forms of cancer in south-eastern Asia
    corecore