479 research outputs found
The Polytropic Equation of State of Interstellar Gas Clouds
Models are presented for the polytropic equation of state of
self-gravitating, quiescent interstellar gas clouds. A detailed analysis,
including chemistry, thermal balance, and radiative transfer, is performed for
the physical state of the gas as a function of density, metallicity, velocity
field, and background radiation field. It is found that the stiffness of the
equation of state strongly depends on all these physical parameters, and the
adiabatic index varies between 0.2-1.4. The implications for star formation, in
particular at high redshift and in starburst galaxies, and the initial stellar
mass function are discussed.Comment: Accepted by Ap
The first frost in the Pipe Nebula
Spectroscopic studies of ices in nearby star-forming regions indicate that
ice mantles form on dust grains in two distinct steps, starting with polar ice
formation (H2O rich) and switching to apolar ice (CO rich). We test how well
the picture applies to more diffuse and quiescent clouds where the formation of
the first layers of ice mantles can be witnessed. Medium-resolution
near-infrared spectra are obtained toward background field stars behind the
Pipe Nebula. The water ice absorption is positively detected at 3.0 micron in
seven lines of sight out of 21 sources for which observed spectra are
successfully reduced. The peak optical depth of the water ice is significantly
lower than those in Taurus with the same visual extinction. The source with the
highest water-ice optical depth shows CO ice absorption at 4.7 micron as well.
The fractional abundance of CO ice with respect to water ice is 16+7-6 %, and
about half as much as the values typically seen in low-mass star-forming
regions. A small fractional abundance of CO ice is consistent with some of the
existing simulations. Observations of CO2 ice in the early diffuse phase of a
cloud play a decisive role in understanding the switching mechanism between
polar and apolar ice formation.Comment: 17 pages, 8 figures, accepted by A&
Thermochemical modelling of brown dwarf discs
RCH acknowledges funding by the Austrian Science Fund (FWF): project number P24790.The physical properties of brown dwarf discs, in terms of their shapes and sizes, are still largely unexplored by observations. ALMA has by far the best capabilities to observe these discs in sub-mm CO lines and dust continuum, while also spatially resolving some discs. To what extent brown dwarf discs are similar to scaled-down T Tauri discs is currently unknown, and this work is a step towards establishing a relationship through the eventual modelling of future observations. We use observations of the brown dwarf disc ρ Oph 102 to infer a fiducial model around which we build a small grid of brown dwarf disc models, in order to model the CO, HCN, and HCO+ line fluxes and the chemistry which drives their abundances. These are the first brown dwarf models to be published which relate detailed, 2D radiation thermochemical disc models to observational data. We predict that moderately extended ALMA antenna configurations will spatially resolve CO line emission around brown dwarf discs, and that HCN and HCO+ will be detectable in integrated flux, following our conclusion that the flux ratios of these molecules to CO emission are comparable to that of T Tauri discs. These molecules have not yet been observed in sub-mm wavelengths in a brown dwarf disc, yet they are crucial tracers of the warm surface-layer gas and of ionization in the outer parts of the disc. We present the prediction that if the physical and chemical processes in brown dwarf discs are similar to those that occur in T Tauri discs-as our models suggest-then the same diagnostics that are used for T Tauri discs can be used for brown dwarf discs (such as HCN and HCO+ lines that have not yet been observed in the sub-mm), and that these lines should be observable with ALMA. Through future observations, either confirmation (or refutation) of these ideas about brown dwarf disc chemistry will have strong implications for our understanding of disc chemistry, structure, and subsequent planet formation in brown dwarf discs.Publisher PDFPeer reviewe
Parameterizing the interstellar dust temperature
The temperature of interstellar dust particles is of great importance to
astronomers. It plays a crucial role in the thermodynamics of interstellar
clouds, because of the gas-dust collisional coupling. It is also a key
parameter in astrochemical studies that governs the rate at which molecules
form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression
for the dust temperature is adopted, because of computational constraints,
while astrochemical modelers tend to keep the dust temperature constant over a
large range of parameter space. Our aim is to provide an easy-to-use parametric
expression for the dust temperature as a function of visual extinction () and to shed light on the critical dependencies of the dust temperature on
the grain composition. We obtain an expression for the dust temperature by
semi-analytically solving the dust thermal balance for different types of
grains and compare to a collection of recent observational measurements. We
also explore the effect of ices on the dust temperature. Our results show that
a mixed carbonaceous-silicate type dust with a high carbon volume fraction
matches the observations best. We find that ice formation allows the dust to be
warmer by up to 15% at high optical depths ( mag) in the
interstellar medium. Our parametric expression for the dust temperature is
presented as , where is in units of the Draine (1978) UV fieldComment: 16 pages, 17 figures, 4 tables. Accepted for publication in A&A.
Version 2: the omission of factor 0.921 in equation 4 is correcte
P Cygni Profiles of Molecular Lines Toward Arp 220 Nuclei
We report ~100 pc (0farcs3) resolution observations of (sub)millimeter HCO+ and CO lines in the ultraluminous infrared galaxy Arp 220. The lines peak at two merger nuclei, with HCO+ being more spatially concentrated than CO. Asymmetric line profiles with blueshifted absorption and redshifted emission are discovered in HCO+(3-2) and (4-3) toward the two nuclei and in CO(3-2) toward one nucleus. We suggest that these P Cygni profiles are due to ~100 km s–1 outward motion of molecular gas from the nuclei. This gas is most likely outflowing from the inner regions of the two nuclear disks rotating around individual nuclei, clearing the shroud around the luminosity sources there
The Sparsest Clusters With O Stars
There is much debate on how high-mass star formation varies with environment,
and whether the sparsest star-forming environments are capable of forming
massive stars. To address this issue, we have observed eight apparently
isolated OB stars in the SMC using HST's Advanced Camera for Surveys. Five of
these objects appear as isolated stars, two of which are confirmed to be
runaways. The remaining three objects are found to exist in sparse clusters,
with <10 companion stars revealed, having masses of 1-4 solar mass. Stochastic
effects dominate in these sparse clusters, so we perform Monte Carlo
simulations to explore how our observations fit within the framework of
empirical, galactic cluster properties. We generate clusters using a simplistic
-2 power-law distribution for either the number of stars per cluster (N_*) or
cluster mass (M_cl). These clusters are then populated with stars randomly
chosen from a Kroupa IMF. We find that simulations with cluster lower-mass
limits of M_cl,lo >20 solar mass and N_*,lo >40 match best with observations of
SMC and Galactic OB star populations. We examine the mass ratio of the
second-most massive and most massive stars (m_max,2/m_max), finding that our
observations all exist below the 20th percentile of our simulated clusters.
However, all of our observed clusters lie within the parameter space spanned by
the simulated clusters, although some are in the lowest 5th percentile
frequency. These results suggest that clusters are built stochastically by
randomly sampling stars from a universal IMF with a fixed stellar upper-mass
limit. In particular, we see no evidence to suggest a m_max - M_cl relation.
Our results may be more consistent with core accretion models of star formation
than with competitive accretion models, and they are inconsistent with the
proposed steepening of the integrated galaxy IMF (IGIMF).Comment: 19 pages, 12 figures, accepted for publication in Ap
Black hole accretion and star formation as drivers of gas excitation and chemistry in Mrk231
We present a full high resolution SPIRE FTS spectrum of the nearby
ultraluminous infrared galaxy Mrk231. In total 25 lines are detected, including
CO J=5-4 through J=13-12, 7 rotational lines of H2O, 3 of OH+ and one line each
of H2O+, CH+, and HF. We find that the excitation of the CO rotational levels
up to J=8 can be accounted for by UV radiation from star formation. However,
the approximately flat luminosity distribution of the CO lines over the
rotational ladder above J=8 requires the presence of a separate source of
excitation for the highest CO lines. We explore X-ray heating by the accreting
supermassive black hole in Mrk231 as a source of excitation for these lines,
and find that it can reproduce the observed luminosities. We also consider a
model with dense gas in a strong UV radiation field to produce the highest CO
lines, but find that this model strongly overpredicts the hot dust mass in
Mrk231. Our favoured model consists of a star forming disk of radius 560 pc,
containing clumps of dense gas exposed to strong UV radiation, dominating the
emission of CO lines up to J=8. X-rays from the accreting supermassive black
hole in Mrk231 dominate the excitation and chemistry of the inner disk out to a
radius of 160 pc, consistent with the X-ray power of the AGN in Mrk231. The
extraordinary luminosity of the OH+ and H2O+ lines reveals the signature of
X-ray driven excitation and chemistry in this region.Comment: 5 pages, 2 figures, accepted for publication in Astronomy &
Astrophysics Special Issue on Herschel first result
ALMA reveals a chemically evolved submillimeter galaxy at z=4.76
The chemical properties of high-z galaxies provide important information to
constrain galaxy evolutionary scenarios. However, widely-used metallicity
diagnostics based on rest-frame optical emission lines are not usable for
heavily dust-enshrouded galaxies (such as Sub-Millimeter Galaxies; SMGs),
especially at z>3. Here we focus on the flux ratio of the far-infrared
fine-structure emission lines [NII]205um and [CII]158um to assess the
metallicity of high-z SMGs. Through ALMA cycle 0 observations, we have detected
the [NII]205um emission in a strongly [CII]-emitting SMG, LESS J033229.4-275619
at z=4.76. The velocity-integrated [NII]/[CII] flux ratio is 0.043 +/- 0.008.
This is the first measurement of the [NII]/[CII] flux ratio in high-z galaxies,
and the inferred flux ratio is similar to the ratio observed in the nearby
universe (~0.02-0.07). The velocity-integrated flux ratio and photoionization
models suggest that the metallicity in this SMG is consistent with solar,
implying the chemical evolution has progressed very rapidly in this system at
z=4.76. We also obtain a tight upper limit on the CO(12-11) transition, which
translates into CO(12-11)/CO(2-1) <3.8 (3 sigma). This suggests that the
molecular gas clouds in LESS J033229.4-275619 are not affected significantly by
the radiation field emitted by the AGN in this system.Comment: 5 pages, 3 figures, accepted for publication in Astronomy and
Astrophysics Letter
The James Clerk Maxwell Telescope Spectral Legacy Survey
Original article can be found at: http://www.journals.uchicago.edu/loi/pasp Copyright University of Chicago Press / AAS. DOI: 10.1086/511161Stars form in the densest, coldest, most quiescent regions of molecular clouds. Molecules provide the only probes that can reveal the dynamics, physics, chemistry, and evolution of these regions, but our understanding of the molecular inventory of sources and how this is related to their physical state and evolution is rudimentary and incomplete. The Spectral Legacy Survey (SLS) is one of seven surveys recently approved by the James Clerk Maxwell Telescope (JCMT) Board of Directors. Beginning in 2007, the SLS will produce a spectral imaging survey of the content and distribution of all the molecules detected in the 345 GHz atmospheric window (between 332 and 373 GHz) toward a sample of five sources. Our intended targets are a low-mass core (NGC 1333 IRAS 4), three high-mass cores spanning a range of star-forming environments and evolutionary states (W49, AFGL 2591, and IRAS 20126), and a photodissociation region (the Orion Bar). The SLS will use the unique spectral imaging capabilities of HARP-B/ACSIS (Heterodyne Array Receiver Programme B/Auto- Correlation Spectrometer and Imaging System) to study the molecular inventory and the physical structure of these objects, which span different evolutionary stages and physical environments and to probe their evolution during the star formation process. As its name suggests, the SLS will provide a lasting data legacy from the JCMT that is intended to benefit the entire astronomical community. As such, the entire data set (including calibrated spectral data cubes, maps of molecular emission, line identifications, and calculations of the gas temperature and column density) will be publicly available.Peer reviewe
Structure and Colors of Diffuse Emission in the Spitzer Galactic First Look Survey
We investigate the density structure of the interstellar medium using new
high-resolution maps of the 8 micron, 24 micron, and 70 micron surface
brightness towards a molecular cloud in the Gum Nebula, made as part of the
Spitzer Space Telescope Galactic First Look Survey. The maps are correlated
with 100 micron images measured with IRAS. At 24 and 70 micron, the spatial
power spectrum of surface brightness follows a power law with spectral index
-3.5. At 24 micron, the power law behavior is remarkably consistent from the
0.2 degree size of our maps down to the 5 arcsecond spatial resolution. Thus,
the structure of the 24 micron emission is self-similar even at milliparsec
scales. The combined power spectrum produced from Spitzer 24 micron and IRAS 25
micron images is consistent with a change in the power law exponent from -2.6
to -3.5. The decrease may be due to the transition from a two-dimensional to
three-dimensional structure. Under this hypothesis, we estimate the thickness
of the emitting medium to be 0.3 pc.Comment: 13 Pages, 3 Figures, to be published in Astrophysical Journal
Supplement Series (Spitzer Special Issue), volume 154. Uses aastex v5.
- …
