11,508 research outputs found
Dequantisation of the Dirac Monopole
Using a sheaf-theoretic extension of conventional principal bundle theory,
the Dirac monopole is formulated as a spherically symmetric model free of
singularities outside the origin such that the charge may assume arbitrary real
values. For integral charges, the construction effectively coincides with the
usual model. Spin structures and Dirac operators are also generalised by the
same technique.Comment: 22 pages. Version to appear in Proc. R. Soc. London
Transform of Riccati equation of constant coefficients through fractional procedure
We use a particular fractional generalization of the ordinary differential
equations that we apply to the Riccati equation of constant coefficients. By
this means the latter is transformed into a modified Riccati equation with the
free term expressed as a power of the independent variable which is of the same
order as the order of the applied fractional derivative. We provide the
solutions of the modified equation and employ the results for the case of the
cosmological Riccati equation of FRW barotropic cosmologies that has been
recently introduced by FaraoniComment: 7 pages, 2 figure
Normal Mode Determination of Perovskite Crystal Structures with Octahedral Rotations: Theory and Applications
Nuclear site analysis methods are used to enumerate the normal modes of
perovskite polymorphs with octahedral rotations. We provide the modes
of the fourteen subgroups of the cubic aristotype describing the Glazer
octahedral tilt patterns, which are obtained from rotations of the
octahedra with different sense and amplitude about high symmetry axes. We
tabulate all normal modes of each tilt system and specify the contribution of
each atomic species to the mode displacement pattern, elucidating the physical
meaning of the symmetry unique modes. We have systematically generated 705
schematic atomic displacement patterns for the normal modes of all 15 (14
rotated + 1 unrotated) Glazer tilt systems. We show through some illustrative
examples how to use these tables to identify the octahedral rotations,
symmetric breathing, and first-order Jahn-Teller anti-symmetric breathing
distortions of the octahedra, and the associated Raman selection
rules. We anticipate that these tables and schematics will be useful in
understanding the lattice dynamics of bulk perovskites and would serve as
reference point in elucidating the atomic origin of a wide range of physical
properties in synthetic perovskite thin films and superlattices.Comment: 17 pages, 3 figures, 17 tables. Supporting information accessed
through link specified within manuscrip
The Non-Trapping Degree of Scattering
We consider classical potential scattering. If no orbit is trapped at energy
E, the Hamiltonian dynamics defines an integer-valued topological degree. This
can be calculated explicitly and be used for symbolic dynamics of
multi-obstacle scattering.
If the potential is bounded, then in the non-trapping case the boundary of
Hill's Region is empty or homeomorphic to a sphere.
We consider classical potential scattering. If at energy E no orbit is
trapped, the Hamiltonian dynamics defines an integer-valued topological degree
deg(E) < 2. This is calculated explicitly for all potentials, and exactly the
integers < 2 are shown to occur for suitable potentials.
The non-trapping condition is restrictive in the sense that for a bounded
potential it is shown to imply that the boundary of Hill's Region in
configuration space is either empty or homeomorphic to a sphere.
However, in many situations one can decompose a potential into a sum of
non-trapping potentials with non-trivial degree and embed symbolic dynamics of
multi-obstacle scattering. This comprises a large number of earlier results,
obtained by different authors on multi-obstacle scattering.Comment: 25 pages, 1 figure Revised and enlarged version, containing more
detailed proofs and remark
On solving integral equations using Markov chain Monte Carlo methods
In this paper, we propose an original approach to the solution of Fredholm equations of the second kind. We interpret the standard Von Neumann expansion of the solution as an expectation with respect to a probability distribution defined on a union of subspaces of variable dimension. Based on this representation, it is possible to use trans-dimensional Markov chain Monte Carlo (MCMC) methods such as Reversible Jump MCMC to approximate the solution numerically. This can be an attractive alternative to standard Sequential Importance Sampling (SIS) methods routinely used in this context. To motivate our approach, we sketch an application to value function estimation for a Markov decision process. Two computational examples are also provided
Residence time and collision statistics for exponential flights: the rod problem revisited
Many random transport phenomena, such as radiation propagation,
chemical/biological species migration, or electron motion, can be described in
terms of particles performing {\em exponential flights}. For such processes, we
sketch a general approach (based on the Feynman-Kac formalism) that is amenable
to explicit expressions for the moments of the number of collisions and the
residence time that the walker spends in a given volume as a function of the
particle equilibrium distribution. We then illustrate the proposed method in
the case of the so-called {\em rod problem} (a 1d system), and discuss the
relevance of the obtained results in the context of Monte Carlo estimators.Comment: 9 pages, 8 figure
-to-Glueball form factor and Glueball production in decays
We investigate transition form factors of meson decays into a scalar
glueball in the light-cone formalism. Compared with form factors of to
ordinary scalar mesons, the -to-glueball form factors have the same power in
the expansion of . Taking into account the leading twist light-cone
distribution amplitude, we find that they are numerically smaller than those
form factors of to ordinary scalar mesons. Semileptonic ,
and decays are subsequently investigated. We
also analyze the production rates of scalar mesons in semileptonic decays
in the presence of mixing between scalar and glueball states. The
glueball production in meson decays is also investigated and the LHCb
experiment may discover this channel. The sizable branching fraction in , or could be a clear signal for a scalar glueball
state.Comment: 17 pages, 3 figure, revtex
The Quantum Mellin transform
We uncover a new type of unitary operation for quantum mechanics on the
half-line which yields a transformation to ``Hyperbolic phase space''. We show
that this new unitary change of basis from the position x on the half line to
the Hyperbolic momentum , transforms the wavefunction via a Mellin
transform on to the critial line . We utilise this new transform
to find quantum wavefunctions whose Hyperbolic momentum representation
approximate a class of higher transcendental functions, and in particular,
approximate the Riemann Zeta function. We finally give possible physical
realisations to perform an indirect measurement of the Hyperbolic momentum of a
quantum system on the half-line.Comment: 23 pages, 6 Figure
Functions of several Cayley-Dickson variables and manifolds over them
Functions of several octonion variables are investigated and integral
representation theorems for them are proved. With the help of them solutions of
the -equations are studied. More generally functions of
several Cayley-Dickson variables are considered. Integral formulas of the
Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are
proved in the new generalized form for functions of Cayley-Dickson variables
instead of complex. Moreover, analogs of Stein manifolds over Cayley-Dickson
graded algebras are defined and investigated
Integrability and action operators in quantum Hamiltonian systems
For a (classically) integrable quantum mechanical system with two degrees of
freedom, the functional dependence of the
Hamiltonian operator on the action operators is analyzed and compared with the
corresponding functional relationship in
the classical limit of that system. The former is shown to converge toward the
latter in some asymptotic regime associated with the classical limit, but the
convergence is, in general, non-uniform. The existence of the function
in the integrable regime of a parametric
quantum system explains empirical results for the dimensionality of manifolds
in parameter space on which at least two levels are degenerate. The comparative
analysis is carried out for an integrable one-parameter two-spin model.
Additional results presented for the (integrable) circular billiard model
illuminate the same conclusions from a different angle.Comment: 9 page
- …
