2,809 research outputs found

    The analysis of spectra of novae taken near maximum

    Get PDF
    A project to analyze ultraviolet spectra of novae obtained at or near maximum optical light is presented. These spectra are characterized by a relatively cool continuum with superimposed permitted emission lines from ions such as Fe II, Mg II, and Si II. Spectra obtained late in the outburst show only emission lines from highly ionized species and in many cases these are forbidden lines. The ultraviolet data will be used with calculations of spherical, expanding, stellar atmospheres for novae to determine elemental abundances by spectral line synthesis. This method is extremely sensitive to the abundances and completely independent of the nebular analyses usually used to obtain novae abundances

    Biased chromatin signatures around polyadenylation sites and exons

    Get PDF
    Core RNA-processing reactions in eukaryotic cells occur cotranscriptionally in a chromatin context, but the relationship between chromatin structure and pre-mRNA processing is poorly understood. We observed strong nucleosome depletion around human polyadenylation sites (PAS) and nucleosome enrichment just downstream of PAS. In genes with multiple alternative PAS, higher downstream nucleosome affinity was associated with higher PAS usage, independently of known PAS motifs that function at the RNA level. Conversely, exons were associated with distinct peaks in nucleosome density. Exons flanked by long introns or weak splice sites exhibited stronger nucleosome enrichment, and incorporation of nucleosome density data improved splicing simulation accuracy. Certain histone modifications, including H3K36me3 and H3K27me2, were specifically enriched on exons, suggesting active marking of exon locations at the chromatin level. Together, these findings provide evidence for extensive functional connections between chromatin structure and RNA processing

    Attenuation of acoustic waves in glacial ice and salt domes

    Full text link
    Two classes of natural solid media (glacial ice and salt domes) are under consideration as media in which to deploy instruments for detection of neutrinos with energy >1e18 eV. Though insensitive to 1e11 to 1e16 eV neutrinos for which observatories (e.g., AMANDA and IceCube) that utilize optical Cherenkov radiation detectors are designed, radio and acoustic methods are suited for searches for the very low fluxes of neutrinos with energies >1017 eV. This is because, due to the very long attenuation lengths of radio and acoustic waves in ice and salt, detection modules can be spaced very far apart. In this paper, I calculate the absorption and scattering coefficients as a function of frequency and grain size for acoustic waves in glacial ice and salt domes and show that experimental measurements on laboratory samples and in glacial ice and salt domes are consistent with theory. For South Pole ice with grain size 0.2 cm at -51 degrees C, scattering lengths are calculated to be 2000 km and 25 km at 10 kHz and 30 kHz, respectively, and the absorption length is calculated to be 9 km at frequencies above 100 Hz. For NaCl (rock salt) with grain size 0.75 cm, scattering lengths are calculated to be 120 km and 1.4 km at 10 kHz and 30 kHz, and absorption lengths are calculated to be 30,000 km and 3300 km at 10 kHz and 30 kHz. Existing measurements are consistent with theory. For ice, absorption is the limiting factor; for salt, scattering is the limiting factor.Comment: 16 pages, 7 figures, submitted to Journal of Geophysical Research - Solid Eart

    A novel HIV vaccine adjuvanted by IC31 induces robust and persistent humoral and cellular immunity.

    Get PDF
    The HIV vaccine strategy that, to date, generated immune protection consisted of a prime-boost regimen using a canarypox vector and an HIV envelope protein with alum, as shown in the RV144 trial. Since the efficacy was weak, and previous HIV vaccine trials designed to generate antibody responses failed, we hypothesized that generation of T cell responses would result in improved protection. Thus, we tested the immunogenicity of a similar envelope-based vaccine using a mouse model, with two modifications: a clade C CN54gp140 HIV envelope protein was adjuvanted by the TLR9 agonist IC31®, and the viral vector was the vaccinia strain NYVAC-CN54 expressing HIV envelope gp120. The use of IC31® facilitated immunoglobulin isotype switching, leading to the production of Env-specific IgG2a, as compared to protein with alum alone. Boosting with NYVAC-CN54 resulted in the generation of more robust Th1 T cell responses. Moreover, gp140 prime with IC31® and alum followed by NYVAC-CN54 boost resulted in the formation and persistence of central and effector memory populations in the spleen and an effector memory population in the gut. Our data suggest that this regimen is promising and could improve the protection rate by eliciting strong and long-lasting humoral and cellular immune responses

    Automated library booktruck for traditional libraries

    Get PDF
    Libraries are an integral part of our society’s knowledge repository and even though technological advances such as the internet, smart devices and an ‘always-connected-society’, provide avenues for fast and almost instantaneous access to knowledge, libraries still provide a physical place for the collection and dissemination of knowledge. The prompt shelving of the physical returned library books is an important task in any traditional library. To help speed up the shelving process, this paper proposed and simulated an automated booktruck that is capable of moving returned library books from the return desk back to the shelves. The simulation models currently available robotic hardware and implemented path finding and localization. The simulation results showed that returned books can be delivered to the shelves four times faster than the by using the current practices

    Association between potassium concentrations, variability and supplementation, and in‑hospital mortality in ICU patients: a retrospective analysis

    Get PDF
    BACKGROUND: Serum potassium concentrations are commonly between 3.5 and 5.0 mmol/l. Standardised protocols for potassium range and supplementation in the ICU are lacking. The purpose of this retrospective analysis of ICU patients was to investigate potassium concentrations, variability and supplementation, and their association with in-hospital mortality. METHODS: ICU patients ≥ 18 years, with ≥ 2 serum potassium values, treated at the Charité - Universitätsmedizin Berlin between 2006 and 2018 were eligible for inclusion. We categorised into groups of mean potassium concentrations:  3.5-4.0, > 4.0-4.5, > 4.5-5.0, > 5.0-5.5, > 5.5 mmol/l and potassium variability: 1st, 2nd and ≥ 3rd standard deviation (SD). We analysed the association between the particular groups and in-hospital mortality and performed binary logistic regression analysis. Survival curves were performed according to Kaplan-Meier and tested by Log-Rank. In a subanalysis, the association between potassium supplementation and in-hospital mortality was investigated. RESULTS: In 53,248 ICU patients with 1,337,742 potassium values, the lowest mortality (3.7%) was observed in patients with mean potassium concentrations between > 3.5 and 4.0 mmol/l and a low potassium variability within the 1st SD. Binary logistic regression confirmed these results. In a subanalysis of 22,406 ICU patients (ICU admission: 2013-2018), 12,892 (57.5%) received oral and/or intravenous potassium supplementation. Potassium supplementation was associated with an increase in in-hospital mortality in potassium categories from > 3.5 to 4.5 mmol/l and in the 1st, 2nd and ≥ 3rd SD (p < 0.001 each). CONCLUSIONS: ICU patients may benefit from a target range between 3.5 and 4.0 mmol/l and a minimal potassium variability. Clear potassium target ranges have to be determined. Criteria for widely applied potassium supplementation should be critically discussed. Trial registration German Clinical Trials Register, DRKS00016411. Retrospectively registered 11 January 2019, http://www.drks.de/DRKS00016411

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS

    Full text link
    The AMADEUS system is an integral part of the ANTARES neutrino telescope in the Mediterranean Sea. The project aims at the investigation of techniques for acoustic neutrino detection in the deep sea. Installed at a depth of more than 2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for the broad-band recording of signals with frequencies ranging up to 125kHz. AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each one holding six acoustic sensors that are arranged at distances of roughly 1m from each other. The clusters are installed with inter-spacings ranging from 15m to 340m. Acoustic data are continuously acquired and processed at a computer cluster where online filter algorithms are applied to select a high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in 2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like signals in the deep sea, the characteristics of ambient noise and transient signals have been investigated. In this article, the AMADEUS system will be described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
    corecore