82 research outputs found
Computer‐assisted bone augmentation, implant planning and placement: An in vitro investigation
Aim
To assess in vitro the workflow for alveolar ridge augmentation with customised 3D printed block grafts and simultaneous computer-assisted implant planning and placement.
Methods
Twenty resin mandible models with an edentulous area and horizontal ridge defect in the region 34–36 were scanned with cone beam computed tomography (CBCT). A block graft for horizontal ridge augmentation in the region 34–36 and an implant in the position 35 were digitally planned. Twenty block grafts were 3D printed out of resin and one template for guided implant placement were stereolithographically produced. The resin block grafts were positioned onto the ridge defects and stabilised with two fixation screws each. Subsequently, one implant was inserted in the position 35 through the corresponding template for guided implant placement. Optical scans of the study models together with the fixated block graft were performed prior to and after implant placement. The scans taken after block grafting were superimposed with the virtual block grafting plan through a best-fit algorithm, and the linear deviation between the planned and the achieved block positions was calculated. The precision of the block fixation was obtained by superimposing the 20 scans taken after grafting and calculating the deviation between the corresponding resin blocks. The superimposition between the scans taken after and prior to implant placement was performed to measure a possible displacement in the block position induced by guided implant placement. The (98–2%)/2 percentile value was determined as a parameter for surface deviation.
Results
The mean deviation in the position of the block graft compared to the virtual plan amounted to 0.79 ± 0.13 mm. The mean deviation between the positions of the 20 block grafts measured 0.47 ± 0.2 mm, indicating a clinically acceptable precision. Guided implant placement induced a mean shift of 0.16 ± 0.06 mm in the position of the block graft.
Conclusions
Within the limitations of this in vitro study, it can be concluded that customised block grafts fabricated through CBCT, computer-assisted design and 3D printing allow alveolar ridge augmentation with clinically acceptable predictability and reproducibility. Computer-assisted implant planning and placement can be performed simultaneously with computer-assisted block grafting leading to clinically non-relevant dislocation of block grafts
Preinterventional Third-Molar Assessment Using Robust Machine Learning
Machine learning (ML) models, especially deep neural networks, are increasingly being used for the analysis of medical images and as a supporting tool for clinical decision-making. In this study, we propose an artificial intelligence system to facilitate dental decision-making for the removal of mandibular third molars (M3M) based on 2-dimensional orthopantograms and the risk assessment of such a procedure. A total of 4,516 panoramic radiographic images collected at the Center of Dental Medicine at the University of Zurich, Switzerland, were used for training the ML model. After image preparation and preprocessing, a spatially dependent U-Net was employed to detect and retrieve the region of the M3M and inferior alveolar nerve (IAN). Image patches identified to contain a M3M were automatically processed by a deep neural network for the classification of M3M superimposition over the IAN (task 1) and M3M root development (task 2). A control evaluation set of 120 images, collected from a different data source than the training data and labeled by 5 dental practitioners, was leveraged to reliably evaluate model performance. By 10-fold cross-validation, we achieved accuracy values of 0.94 and 0.93 for the M3M-IAN superimposition task and the M3M root development task, respectively, and accuracies of 0.9 and 0.87 when evaluated on the control data set, using a ResNet-101 trained in a semisupervised fashion. Matthew's correlation coefficient values of 0.82 and 0.75 for task 1 and task 2, evaluated on the control data set, indicate robust generalization of our model. Depending on the different label combinations of task 1 and task 2, we propose a diagnostic table that suggests whether additional imaging via 3-dimensional cone beam tomography is advisable. Ultimately, computer-aided decision-making tools benefit clinical practice by enabling efficient and risk-reduced decision-making and by supporting less experienced practitioners before the surgical removal of the M3M
Local Application of BMP-2 Specific Plasmids in Fibrin Glue does not Promote Implant Fixation
<p>Abstract</p> <p>Background</p> <p>BMP-2 is known to accelerate fracture healing and might also enhance osseointegration and implant fixation. Application of recombinant BMP-2 has a time-limited effect. Therefore, a gene transfer approach with a steady production of BMP-2 appears to be attractive. The aim of this study was to examine the effect of locally applied BMP-2 plasmids on the bone-implant integration in a non-weight bearing rabbit tibia model using a comparatively new non-viral copolymer-protected gene vector (COPROG).</p> <p>Methods</p> <p>Sixty rabbits were divided into 4 groups. All of them received nailing of both tibiae. The verum group had the nails inserted with the COPROG vector and BMP-2 plasmids using fibrin glue as a carrier. Controls were a group with fibrin glue only and a blank group. After 28 and 56 days, these three groups were sacrificed and one tibia was randomly chosen for biomechanical testing, while the other tibia underwent histomorphometrical examination. In a fourth group, a reporter-gene was incorporated in the fibrin glue instead of the BMP-2 formula to prove that transfection was successful.</p> <p>Results</p> <p>Implant fixation strength was significantly lower after 28 and 56 days in the verum group. Histomorphometry supported the findings after 28 days, showing less bone-implant contact.</p> <p>In the fourth group, successful transfection could be confirmed by detection of the reporter-gene in 20 of 22 tibiae. But, also systemic reporter-gene expression was found in heterotopic locations, showing an undesired spreading of the locally applied gene formula.</p> <p>Conclusion</p> <p>Our results underline the transfecting capability of this vector and support the idea that BMP-2 might diminish osseointegration. Further studies are necessary to specify the exact mechanisms and the systemic effects.</p
Analysis of the osseointegrative force of a hyperhydrophilic and nanostructured surface refinement for TPS surfaces in a gap healing model with the Göttingen minipig
Osseointegration of biochemically modified implants in an osteoporosis rodent model
The present study examined the impact of implant surface modifications on osseointegration in an osteoporotic rodent model. Sandblasted, acid-etched titanium implants were either used directly (control) or were further modified by surface conditioning with NaOH or by coating with one of the following active agents: collagen/chondroitin sulphate, simvastatin, or zoledronic acid. Control and modified implants were inserted into the proximal tibia of aged ovariectomised (OVX) osteoporotic rats (n = 32/group). In addition, aged oestrogen competent animals received either control or NaOH conditioned implants. Animals were sacrificed 2 and 4 weeks post-implantation. The excised tibiae were utilised for biomechanical and morphometric readouts (n = 8/group/readout). Biomechanical testing revealed at both time points dramatically reduced osseointegration in the tibia of oestrogen deprived osteoporotic animals compared to intact controls irrespective of NaOH exposure. Consistently, histomorphometric and microCT analyses demonstrated diminished bone-implant contact (BIC), peri-implant bone area (BA), bone volume/tissue volume (BV/TV) and bone-mineral density (BMD) in OVX animals. Surface coating with collagen/chondroitin sulphate had no detectable impact on osseointegration. Interestingly, statin coating resulted in a transient increase in BIC 2 weeks post-implantation; which, however, did not correspond to improvement of biomechanical readouts. Local exposure to zoledronic acid increased BIC, BA, BV/TV and BMD at 4 weeks. Yet this translated only into a non-significant improvement of biomechanical properties. In conclusion, this study presents a rodent model mimicking severely osteoporotic bone. Contrary to the other bioactive agents, locally released zoledronic acid had a positive impact on osseointegration albeit to a lesser extent than reported in less challenging models
Detectability of Osseous Lesions with a Pre-Programmed Low-Dose Protocol for Cone-Beam Computed Tomography
The present study aimed to compare the diagnostic reliability of a pre-set, manufacturer-specific, low-dose mode against a standard-dose mode in the detection of four different osseous lesions in the mandible with cone-beam computed tomography (CBCT). Four types of lesions (periapical lesion, extended periodontal gap, recession of the buccal lamella, sequestrum/fracture) were prepared on 40 pig mandibles. CBCT images were obtained from each mandible, with both the low-dose and standard-dose modes using the Orthophos SL CBCT device (Dentsply-Sirona, Bensheim, Germany). Twelve assessors quantitatively (detection of lesions) and qualitatively (assessment of detectability) evaluated the CBCT images in SIDEXIS 4 (Dentsply-Sirona) using a study-specific digital examination tool. A correct diagnosis was achieved in almost 71% (LD: 70.8%; SD: 70.9%) of 1920 lesions, without a statistically significant difference between the low-dose and standard-dose mode. This finding was consistent across all four lesion types. In conclusion, while low-dose mode and standard-dose mode CBCT scans performed similarly in the detection of four prepared lesions of the mandible, the former may be a promising, user-friendly alternative method of obtaining radiation-optimized, three-dimensional images in accordance with the As Low As Diagnostically Acceptable (ALADA) principle
- …
