3,378 research outputs found
Surface composition of BaTiO3/SrTiO3(001) films grown by atomic oxygen plasma assisted molecular beam epitaxy
We have investigated the growth of BaTiO3 thin films deposited on pure and 1%
Nb-doped SrTiO3(001) single crystals using atomic oxygen assisted molecular
beam epitaxy (AO-MBE) and dedicated Ba and Ti Knudsen cells. Thicknesses up to
30 nm were investigated for various layer compositions. We demonstrate 2D
growth and epitaxial single crystalline BaTiO3 layers up to 10 nm before
additional 3D features appear; lattice parameter relaxation occurs during the
first few nanometers and is completed at {\guillemotright}10 nm. The presence
of a Ba oxide rich top layer that probably favors 2D growth is evidenced for
well crystallized layers. We show that the Ba oxide rich top layer can be
removed by chemical etching. The present work stresses the importance of
stoichiometry and surface composition of BaTiO3 layers, especially in view of
their integration in devices.Comment: In press in J. Appl. Phy
Structural and magnetic properties of CoPt mixed clusters
In this present work, we report a structural and magnetic study of mixed
Co58Pt42 clusters. MgO, Nb and Si matrix can be used to embed clusters,
avoiding any magnetic interactions between particles. Transmission Electron
Microscopy (TEM) observations show that Co58Pt42 supported isolated clusters
are about 2nm in diameter and crystallized in the A1 fcc chemically disordered
phase. Grazing Incidence Small Angle X-ray Scattering (GISAXS) and Grazing
Incidence Wide Angle X-ray Scattering (GIWAXS) reveal that buried clusters
conserve these properties, interaction with matrix atoms being limited to their
first atomic layers. Considering that 60% of particle atoms are located at
surface, this interactions leads to a drastic change in magnetic properties
which were investigated with conventional magnetometry and X-Ray Magnetic
Circular Dichro\"{i}sm (XMCD). Magnetization and blocking temperature are
weaker for clusters embedded in Nb than in MgO, and totally vanish in silicon
as silicides are formed. Magnetic volume of clusters embedded in MgO is close
to the crystallized volume determined by GIWAXS experiments. Cluster can be
seen as a pure ferromagnetic CoPt crystallized core surrounded by a
cluster-matrix mixed shell. The outer shell plays a predominant role in
magnetic properties, especially for clusters embedded in niobium which have a
blocking temperature 3 times smaller than clusters embedded in MgO
Role of disorder in half-filled high Landau levels
We study the effects of disorder on the quantum Hall stripe phases in
half-filled high Landau levels using exact numerical diagonalization. We show
that, in the presence of weak disorder, a compressible, striped charge density
wave, becomes the true ground state. The projected electron density profile
resembles that of a smectic liquid. With increasing disorder strength W, we
find that there exists a critical value, W_c \sim 0.12 e^2/\epsilon l, where a
transition/crossover to an isotropic phase with strong local electron density
fluctuations takes place. The many-body density of states are qualitatively
distinguishable in these two phases and help elucidate the nature of the
transition.Comment: 4 pages, 4 figure
Determination of the cation site distribution of the spinel in multiferroic CoFe2O4 / BaTiO3 layers by X-ray photoelectron spectroscopy
International audienceThe properties of CoFe2O4/BaTiO3 artificial multiferroic multilayers strongly depend on the crystalline structure, the stoichiometry and the cation distribution between octahedral (Oh) and tetrahedral (Td) sites (inversion factor). In the present study, we have investigated epitaxial CoFe2O4 layers grown on BaTiO3, with different Co/Fe ratios. We determined the cation distribution in our samples by X-ray magnetic circular dichroism (XMCD), a well accepted method to do so, and by X-ray photoelectron spectroscopy (XPS), using a fitting method based on physical considerations. We observed that our XPS approach converged on results consistent with XMCD measurements made on the same samples. Thus, within a careful decomposition based on individual chemical environments it is shown that XPS is fully able to determine the actual inversion factor
Thermodynamic properties of the d-density wave order in cuprates
We solve a popular effective Hamiltonian of competing -density wave and
d-wave superconductivity orders self-consistently at the mean-field level for a
wide range of doping and temperature. The theory predicts a temperature
dependence of the -density wave order parameter seemingly inconsistent with
the neutron scattering and SR experiments of the cuprates. We further
calculate thermodynamic quantities, such as chemical potential, entropy and
specific heat. Their distinct features can be used to test the existence of the
-density wave order in cuprates.Comment: changed to 4 pages and 4 figures. More reference added. Accepted by
Phys. Rev.
Structure of self-organized Fe clusters grown on Au(111) analyzed by Grazing Incidence X-Ray Diffraction
We report a detailed investigation of the first stages of the growth of
self-organized Fe clusters on the reconstructed Au(111) surface by grazing
incidence X-ray diffraction. Below one monolayer coverage, the Fe clusters are
in "local epitaxy" whereas the subsequent layers adopt first a strained fcc
lattice and then a partly relaxed bcc(110) phase in a Kurdjumov-Sachs epitaxial
relationship. The structural evolution is discussed in relation with the
magnetic properties of the Fe clusters.Comment: 7 pages, 6 figures, submitted to Physical Review B September 200
Top-transmon: hybrid superconducting qubit for parity-protected quantum computation
Qubits constructed from uncoupled Majorana fermions are protected from
decoherence, but to perform a quantum computation this topological protection
needs to be broken. Parity-protected quantum computation breaks the protection
in a minimally invasive way, by coupling directly to the fermion parity of the
system --- irrespective of any quasiparticle excitations. Here we propose to
use a superconducting charge qubit in a transmission line resonator (a socalled
transmon) to perform parity-protected rotations and read-out of a topological
(top) qubit. The advantage over an earlier proposal using a flux qubit is that
the coupling can be switched on and off with exponential accuracy, promising a
reduced sensitivity to charge noise.Comment: 7 pages, 5 figure
Finite Temperature Density Instability at High Landau Level Occupancy
We study here the onset of charge density wave instabilities in quantum Hall
systems at finite temperature for Landau level filling . Specific
emphasis is placed on the role of disorder as well as an in-plane magnetic
field. Beyond some critical value, disorder is observed to suppress the charge
density wave melting temperature to zero. In addition, we find that a
transition from perpendicular to parallel stripes (relative to the in-plane
magnetic field) exists when the electron gas thickness exceeds \AA.
The perpendicular alignment of the stripes is in agreement with the
experimental finding that the easy conduction direction is perpendicular to the
in-plane field.Comment: 4 pages, 2 eps figures. We show explicitly that a transition from
perpendicular to parallel stripes (relative to the in-plane magnetic field)
exists when the electron gas thickness exceeds \AA. The
perpendicular alignment of the stripes is in agreement with the experimental
finding that the easy conduction direction is perpendicular to the in-plane
fiel
Density Induced Interchange of Anisotropy Axes at Half-Filled High Landau Levels
We observe density induced 90 rotations of the anisotropy axes in
transport measurements at half-filled high Landau levels in the two dimensional
electron system, where stripe states are proposed (=9/2, 11/2, etc). Using
a field effect transistor, we find the transition density to be
cm at =9/2. Hysteresis is observed in the
vicinity of the transition. We construct a phase boundary in the filling
factor-magnetic field plane in the regime . An in-plane magnetic
field applied along either anisotropy axis always stabilizes the low density
orientation of the stripes.Comment: 1 revtex file, 3 eps figure
- …
