1,530 research outputs found
Recommended from our members
A Study of the Relationship Between Antivirus Regressions and Label Changes
AntiVirus (AV) products use multiple components to detect malware. A component which is found in virtually all AVs is the signature-based detection engine: this component assigns a particular signature label to a malware that the AV detects. In previous analysis [1-3], we observed cases of regressions in several different AVs: i.e. cases where on a particular date a given AV detects a given malware but on a later date the same AV fails to detect the same malware. We studied this aspect further by analyzing the only externally observable behaviors from these AVs, namely whether AV engines detect a malware and what labels they assign to the detected malware. In this paper we present the results of the analysis about the relationship between the changing of the labels with which AV vendors recognize malware and the AV regressions
Recommended from our members
Diversity with AntiVirus products: Additional empirical studies
In this paper we describe the design of a new set of empirical studies we will run to test the gains in detection capabilities from using diverse AntiVirus products. This new work builds on previous work on this topic reported in [1, 2, 3]. We describe the motivation for this work, how it extends the previous work and what studies we will conduct
An Expansion Formula for Fractional Derivatives and its Application
An expansion formula for fractional derivatives given as in form of a
series involving function and moments of its k-th derivative is derived. The
convergence of the series is proved and an estimate of the reminder is given.
The form of the fractional derivative given here is especially suitable in
deriving restrictions, in a form of internal variable theory, following from
the second law of thermodynamics, when applied to linear viscoelasticity of
fractional derivative type
Recommended from our members
Improved measurement technique for the characterisation of phase change materials using the T-history method
Recently the interest in Phase Change Materials (PCMs) has grown significantly amongst researchers [1-9]. Namely, these materials, due to their ability to store large amounts of thermal energy in relatively small temperature intervals, can be effectively used for various thermal energy storage (TES) applications. Nevertheless, accurate knowledge of the thermal properties of PCMs is a prerequisite before design processes and real time deployments of any TES applications.
The T-history method is widely used for the investigation of phase change materials. The majority of the T-history studies reported in the literature during the last 20 years aim to reduce the temperature and the heat storage uncertainty associated with the PCMs measurement [3-9]. Reduction of these uncertainties is important since it should provide better material utilisation. This paper presents an improved measurement technique for the characterisation of PCMs using the T-history method. The main modifications involved in the measurement process are briefly summarized below.
Primarily, suggested improvements include the selection of the thermally controlled environment and the temperature sensing modalities for the T-history setup. This was followed by the development of the adequate instrumentation and data acquisition system. In addition, the mathematical model given by Marin et al. was adjusted for the data analysis in order to take the subcooling phenomenon into account. The calculated results on heat capacity were presented as heat density in given temperature intervals, as suggested by Mehling et al. Moreover, the determination of the total phase change heat in case of both cooling and heating cycles showed that the reduction of relevant temperature and heat storage uncertainties was achieved
Photoelectrochemical properties of sol–gel obtained titanium oxide
The photoelectrochemical properties of a sol–gel prepared titanium oxide coating applied onto a Ti substrate were investigated. The oxide coating was formed from an inorganic sol thermally treated in air at 350 °C. The coating consisted of agglomerates of narrow size distribution around 100 nm. The photoelectrochemical characteristics were evaluated by investigating the changes in the open circuit potential, current transients and impedance characteristics of a Ti/TiO2 electrode upon illumination by UV light in H2SO4 solution and in the oxidation of benzyl alcohol. The electrode was found to be active for photoelectrochemical reactions in the investigated solutions
Recommended from our members
Comparison of thermistor linearization techniques for accurate temperature measurement in phase change materials
Alternate energy technologies are developing rapidly in the recent years. A significant part of this trend is the development of different phase change materials (PCMs). Proper utilization of PCMs requires accurate thermal characterization. There are several methodologies used in this field. This paper stresses the importance of accurate temperature measurements during the implementation of T-history method. Since the temperature sensor size is also important thermistors have been selected as the sensing modality. Two thermistor linearization techniques, one based on Wheatstone bridge and the other based on simple serial-parallel resistor connection, are compared in terms of achievable temperature accuracy through consideration of both, nonlinearity and self-heating errors. Proper calibration was performed before T-history measurement of RT21 (RUBITHERM® GmbH) PCM. Measurement results suggest that the utilization of serial-parallel resistor connection gives better accuracy (less than ±0.1°C) in comparison with the Wheatstone bridge based configuration (up to ±1.5°C)
In silico methods in stability testing of hydrocortisone, powder for injections: Multiple regression analysis versus dynamic neural network
This article presents the possibility of using of multiple regression analysis (MRA) and dynamic neural network (DNN) for prediction of stability of Hydrocortisone 100 mg (in a form of hydrocortisone sodium succinate) freeze-dried powder for injection packed into a dual chamber container. Degradation products of hydrocortisone sodium succinate: free hydrocortisone and related substances (impurities A, B, C, D and E; unspecified impurities and total impurities) were followed during stress and formal stability studies. All data obtained during stability studies were used for in silico modeling; multiple regression models and dynamic neural networks as well, in order to compare predicted and observed results. High values of coefficient of determination (0.950.99) were gained using MRA and DNN, so both methods are powerful tools for in silico stability studies, but superiority of DNN over mathematical modeling of degradation was also confirmed
ICN as Network Infrastructure for Multi-Sensory Devices: Local Domain Service Discovery for ICN-based IoT Environments
Information Centric Networking (ICN) is an emerging research topic aiming at shifting the Internet from its current host-centric paradigm towards an approach centred around content, which enables the direct retrieval of information objects in a secure, reliable, scalable, and efficient way. The exposure of ICN to scenarios other than static content distribution is a growing research topic, promising to extend the impact of ICN to a broader scale. In this context, particular attention has been given to the application of ICN in Internet of Things (IoT) environments. The current paper, by focusing on local domain IoT scenarios, such as multi-sensory Machine to Machine environments, discusses the challenges that ICN, particularly Interest-based solutions, impose to service discovery. This work proposes a service discovery mechanism for such scenarios, relying on an alternative forwarding pipeline for supporting its core operations. The proposed mechanism is validated through a proof-of-concept prototype, developed on top of the Named Data Networking ICN architecture, with results showcasing the benefits of our solution for discovering services within a collision domain. © 2017 Springer Science+Business Media New Yor
When linearity prevails over hierarchy in syntax
Hierarchical structure has been cherished as a grammatical universal. We use experimental methods to show where linear order is also a relevant syntactic relation. An identical methodology and design were used across six research sites on South Slavic languages. Experimental results show that in certain configurations, grammatical production can in fact favor linear order over hierarchical structure. However, these findings are limited to coordinate structures and distinct from the kind of production errors found with comparable configurations such as “attraction” errors. The results demonstrate that agreement morphology may be computed in a series of steps, one of which is partly independent from syntactic hierarchy
- …
