2,332 research outputs found
Stochastic Cooling at the ESR
Stochastic precooling at the ESR storage ring of GSI will be used mainly for experiments with stored radioactive fragment beams. They arrive from the fragment separator with momentum spreads and emittances for which electron cooling is too slow. The installation of components at the ESR is now complete and first commissioning experiments have been performed. Both longitudinal and transverse stochastic cooling have been demonstrated. The paper gives a short account of the system architecture, and of the response of quarter-wave plates and superelectrodes at intermediate energies. The preparation of fragment beams suitable for subsequent electron cooling is discussed for the case that a mixture of different ion species is present in the cooler ring. Results of commissioning and future prospects are presented
An accelerator mode based technique for studying quantum chaos
We experimentally demonstrate a method for selecting small regions of phase
space for kicked rotor quantum chaos experiments with cold atoms. Our technique
uses quantum accelerator modes to selectively accelerate atomic wavepackets
with localized spatial and momentum distributions. The potential used to create
the accelerator mode and subsequently realize the kicked rotor system is formed
by a set of off-resonant standing wave light pulses. We also propose a method
for testing whether a selected region of phase space exhibits chaotic or
regular behavior using a Ramsey type separated field experiment.Comment: 5 pages, 3 figures, some modest revisions to previous version (esp.
to the figures) to aid clarity; accepted for publication in Physical Review A
(due out on January 1st 2003
Predicting cortical bone adaptation to axial loading in the mouse tibia
The development of predictive mathematical models can contribute to a deeper understanding of the specific stages of bone mechanobiology and the process by which bone adapts to mechanical forces. The objective of this work was to predict, with spatial accuracy, cortical bone adaptation to mechanical load, in order to better understand the mechanical cues that might be driving adaptation. The axial tibial loading model was used to trigger cortical bone adaptation in C57BL/6 mice and provide relevant biological and biomechanical information. A method for mapping cortical thickness in the mouse tibia diaphysis was developed, allowing for a thorough spatial description of where bone adaptation occurs. Poroelastic finite-element (FE) models were used to determine the structural response of the tibia upon axial loading and interstitial fluid velocity as the mechanical stimulus. FE models were coupled with mechanobiological governing equations, which accounted for non-static loads and assumed that bone responds instantly to local mechanical cues in an on–off manner. The presented formulation was able to simulate the areas of adaptation and accurately reproduce the distributions of cortical thickening observed in the experimental data with a statistically significant positive correlation (Kendall's τ rank coefficient τ = 0.51, p < 0.001). This work demonstrates that computational models can spatially predict cortical bone mechanoadaptation to a time variant stimulus. Such models could be used in the design of more efficient loading protocols and drug therapies that target the relevant physiological mechanisms
Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell
Nonlinear magneto-optical resonances have been measured in an extremely thin
cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural
isotopic composition. All hyperfine transitions of both isotopes have been
studied for a wide range of laser power densities, laser detunings, and ETC
wall separations. Dark resonances in the laser induced fluorescence (LIF) were
observed as expected when the ground state total angular momentum F_g was
greater than or equal to the excited state total angular momentum F_e. Unlike
the case of ordinary cells, the width and contrast of dark resonances formed in
the ETC dramatically depended on the detuning of the laser from the exact
atomic transition. A theoretical model based on the optical Bloch equations was
applied to calculate the shapes of the resonance curves. The model averaged
over the contributions from different atomic velocity groups, considered all
neighboring hyperfine transitions, took into account the splitting and mixing
of magnetic sublevels in an external magnetic field, and included a detailed
treatment of the coherence properties of the laser radiation. Such a
theoretical approach had successfully described nonlinear magneto-optical
resonances in ordinary vapor cells. Although the values of certain model
parameters in the ETC differed significantly from the case of ordinary cells,
the same physical processes were used to model both cases. However, to describe
the resonances in the ETC, key parameters such as the transit relaxation rate
and Doppler width had to be modified in accordance with the ETC's unique
features. Agreement between the measured and calculated resonance curves was
satisfactory for the ETC, though not as good as in the case of ordinary cells.Comment: v2: substantial changes and expanded theoretical model; 13 pages, 10
figures; accepted for publication in Physical Review
Fast Stochastic Cooling of Heavy Ions at the ESR Storage Ring
Since the completion of the installation of pick-up and kicker tanks in the ESR, stochastic cooling in all phase space dimensions has been demonstrated with rather short cooling times. New RF components were added. The system is now ready for experiments with secondary beams. The momentum sensitivity of the pick-up electrodes was measured. The ability of the Palmer cooling system to cool beams with a maximum momentum spread of ± 0.7 % was demonstrated. After injecting an uncooled primary argon beam from the SIS synchrotron, e-folding cooling times of 0.86 s in the longitudinal phase plane and 1.6 s in the horizontal plane were measured with 5×106 injected particles. These values are close to theoretical expectations. In a first experiment with uranium, the shortest cooling times have been below 0.5 s in both the longitudinal and vertical phase planes. The system cools the complete injected beam without beam loss. An experiment with beam accumulation following stochastic precooling was performed successfully. The resulting equilibrium phase space densities are high enough to be followed by fast electron cooling of the stack
On the transverse mode of an atom laser
The transverse mode of an atom laser beam that is outcoupled from a
Bose-Einstein condensate is investigated and is found to be strongly determined
by the mean--field interaction of the laser beam with the condensate. Since for
repulsive interactions the geometry of the coupling scheme resembles an
interferometer in momentum space, the beam is found show filamentation.
Observation of this effect would prove the transverse coherence of an atom
laser beam.Comment: 4 pages, 4 figure
Effects of a nonlinear perturbation on dynamical tunneling in cold atoms
We perform a numerical analysis of the effects of a nonlinear perturbation on
the quantum dynamics of two models describing non-interacting cold atoms in a
standing wave of light with a periodical modulated amplitude . One model
is the driven pendulum, considered in ref.\cite{raiz1}, and the other is a
variant of the well-known Kicked Rotator Model. In absence of the nonlinear
perturbation, the system is invariant under some discrete symmetries and
quantum dynamical tunnelling between symmetric classical islands is found. The
presence of nonlinearity destroys tunnelling, breaking the symmetries of the
system. Finally, further consequences of nonlinearity in the kicked rotator
case are considered.Comment: 10 pages, 15 figure
- …
