2,464 research outputs found
Dietary Nitrate: Effects on the health of weaning pigs and Antimicrobial activity on seven probiotic Bifidobacterium spp. strains
The potential role of nitrite as an antimicrobial substance in the stomach may be of some importance in the ecology of the gastrointestinal tract and in host physiology. It has been shown that nitrite, under the acidic conditions of the stomach, may kill gut pathogens like Salmonella enteritidis, Escherichia coli, Salmonella typhimurium, and Yersinia enterocolitica, whereas acid alone has only a bacteriostatic effect. An in vivo study was conducted in order to assess the effects of dietary nitrate on microbiota and on the health of the gut (particularly in the stomach and small intestine). 96 weaning pigs were fed a diet containing high nitrate levels (15 mg and 150 mg) and then challenged with Salmonella enterica serovar typhimurium.
Differences in composition of the gut microbiota were assessed by analysing samples from the pigs: To date analysis of 48 pigs has been completed.. Preliminary results demonstrated no effect on the population densities of microbial groups either from the challenge or from nitrate intake. However, increasing the time from challenge decreased either the counts of LAB in the stomach and jejunum or of clostridia in the stomach.
Bifidobacteria also decreased in the stomach contents as nitrate supplementation increased. Supplementing the feedstuff with high dietary nitrate intake and then challenging with Salmonella did not affect the gastric pH or the degree of ulceration in the pigs.
The synergistic bactericidal effects of pH, nitrite and thiocyanate on seven probiotic Bifidobacterium spp. strains were also investigated in an in vitro study.
The results of the in vitro study demonstrated that an inhibitory effect exists on the seven probiotic bifidobacteria investigated with an exposure longer than 2 hours and pH values < 5.0. Addition of thiocyanate also increased the susceptibility of the tested strains. In this in vitro study, the most resistant strains at all conditions were B. animalis subsp. lactis Ra 18 and P32 and B. choerinum Su 877, Su 837 and Su 891
A Computer Aided Detection system for mammographic images implemented on a GRID infrastructure
The use of an automatic system for the analysis of mammographic images has
proven to be very useful to radiologists in the investigation of breast cancer,
especially in the framework of mammographic-screening programs. A breast
neoplasia is often marked by the presence of microcalcification clusters and
massive lesions in the mammogram: hence the need for tools able to recognize
such lesions at an early stage. In the framework of the GPCALMA (GRID Platform
for Computer Assisted Library for MAmmography) project, the co-working of
italian physicists and radiologists built a large distributed database of
digitized mammographic images (about 5500 images corresponding to 1650
patients) and developed a CAD (Computer Aided Detection) system, able to make
an automatic search of massive lesions and microcalcification clusters. The CAD
is implemented in the GPCALMA integrated station, which can be used also for
digitization, as archive and to perform statistical analyses. Some GPCALMA
integrated stations have already been implemented and are currently on clinical
trial in some italian hospitals. The emerging GRID technology can been used to
connect the GPCALMA integrated stations operating in different medical centers.
The GRID approach will support an effective tele- and co-working between
radiologists, cancer specialists and epidemiology experts by allowing remote
image analysis and interactive online diagnosis.Comment: 5 pages, 5 figures, to appear in the Proceedings of the 13th
IEEE-NPSS Real Time Conference 2003, Montreal, Canada, May 18-23 200
Amplified biochemical oscillations in cellular systems
We describe a mechanism for pronounced biochemical oscillations, relevant to
microscopic systems, such as the intracellular environment. This mechanism
operates for reaction schemes which, when modeled using deterministic rate
equations, fail to exhibit oscillations for any values of rate constants. The
mechanism relies on amplification of the underlying stochasticity of reaction
kinetics within a narrow window of frequencies. This amplification allows
fluctuations to beat the central limit theorem, having a dominant effect even
though the number of molecules in the system is relatively large. The mechanism
is quantitatively studied within simple models of self-regulatory gene
expression, and glycolytic oscillations.Comment: 35 pages, 6 figure
Quantum Tunneling in Nuclear Fusion
Recent theoretical advances in the study of heavy ion fusion reactions below
the Coulomb barrier are reviewed. Particular emphasis is given to new ways of
analyzing data, such as studying barrier distributions; new approaches to
channel coupling, such as the path integral and Green function formalisms; and
alternative methods to describe nuclear structure effects, such as those using
the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects,
higher-order couplings, and shape-phase transitions are elucidated. The current
status of the fusion of unstable nuclei and very massive systems are briefly
discussed.Comment: To appear in the January 1998 issue of Reviews of Modern Physics. 13
Figures (postscript file for Figure 6 is not available; a hard copy can be
requested from the authors). Full text and figures are also available at
http://nucth.physics.wisc.edu/preprints
Exploring the performance of the spectrometer prisma in heavy zirconium and xenon mass regions
We present results from two recent runs which illustrate the performance of the PRISMA spectrometer in the proximity of the upper limit of its operational interval, namely 96Zr + 124Sn at Elab = 500 MeV and 136Xe + 208Pb at Elab = 930 MeV. In the latter run, the γ array CLARA also allowed us to identify previously unknown γ transitions in the nuclides 136Cs and 134I
Role of the target orientation angle and orbital angular momentum in the evaporation residue production
The influence of the orientation angles of the target nucleus symmetry axis
relative to the beam direction on the production of the evaporation residues is
investigated for the Ca+Sm reaction as a function of the beam
energy. At low energies (137 MeV), the yield of evaporation
residues is observed only for collisions with small orientation angles
().
At large energies (about 140--180 MeV) all the orientation
angles can contribute to the evaporation residue cross section
in the 10--100 mb range, and at 180 MeV
ranges around 0.1--10 mb because the fission barrier for a compound nucleus
decreases by increasing its excitation energy and angular momentum.Comment: 20 pages, 10 figures, submitted to JPS
Fusion barrier distributions in systems with finite excitation energy
Eigen-channel approach to heavy-ion fusion reactions is exact only when the
excitation energy of the intrinsic motion is zero. In order to take into
account effects of finite excitation energy, we introduce an energy dependence
to weight factors in the eigen-channel approximation. Using two channel
problem, we show that the weight factors are slowly changing functions of
incident energy. This suggests that the concept of the fusion barrier
distribution still holds to a good approximation even when the excitation
energy of the intrinsic motion is finite. A transition to the adiabatic
tunneling, where the coupling leads to a static potential renormalization, is
also discussed.Comment: 9 pages, 4 figures, Submitted to Physical Review
On the decay of deformed actinide nuclei
decay through a deformed potential barrier produces significant
mixing of angular momenta when mapped from the nuclear interior to the outside.
Using experimental branching ratios and either semi-classical or
coupled-channels transmission matrices, we have found that there is a set of
internal amplitudes which are essentially constant for all even--even actinide
nuclei. These same amplitudes also give good results for the known anisotropic
particle emission of the favored decays of odd nuclei in the same mass
region.
PACS numbers: 23.60.+e, 24.10.Eq, 27.90.+bComment: 5 pages, latex (revtex style), 2 embedded postscript figures
uuencoded gz-compressed .tar file To appear in Physical Review Letter
- …
