120 research outputs found
Ultrasound Investigations of Orbital Quadrupolar Ordering in UPd_3
For a high-quality single crystal of UPd_3 we present the relevant elastic
constants and ultrasonic attenuation data. In addition to the magnetic phase
transition at T_2=4.4 +/- 0.1K and the quadrupolar transition at T_1~6.8K, we
find orbital ordering at T_0=7.6 +/- 0.1K concomitant with a symmetry change
from hexagonal to orthorhombic. A striking feature is the splitting of the
phase transition at T_1 into a second-order transition at T_{+1}=6.9 +/- 0.05K
and a first-order transition at T_{-1}=6.7 +/- 0.05K. For the four phase
transitions, the quadrupolar order parameters and the respective symmetry
changes are specified.Comment: 14 pages (RevTex), 3 eps-figures, accepted by PR
Magnetic Field Effects on Neutron Diffraction in the Antiferromagnetic Phase of
We discuss possible magnetic structures in UPt based on our analysis of
elastic neutron-scattering experiments in high magnetic fields at temperatures
. The existing experimental data can be explained by a single-{\bf q}
antiferromagnetic structure with three independent domains. For modest in-plane
spin-orbit interactions, the Zeeman coupling between the antiferromagnetic
order parameter and the magnetic field induces a rotation of the magnetic
moments, but not an adjustment of the propagation vector of the magnetic order.
A triple-{\bf q} magnetic structure is also consistent with neutron
experiments, but in general leads to a non-uniform magnetization in the
crystal. New experiments could decide between these structures.Comment: 5 figures included in the tex
Synthesis of gamma-labeled nucleoside 5 `-triphosphates using click chemistry
Real-time enzymatic studies are gaining importance as their chemical and technical instrumentation improves. Here we report the efficient synthesis of gamma-alkyne modified triphosphate amidates that are converted into a variety of gamma-fluorophore labeled triphosphates by Cu(I) catalyzed alkyne/azide click reactions. The synthesized triphosphates are incorporated into DNA by DNA polymerases
Nuclear mRNPs are compact particles packaged with a network of proteins promoting RNA–RNA interactions
Reliable identification of protein-protein interactions by crosslinking mass spectrometry
Protein-protein interactions govern most cellular pathways and processes, and multiple technologies have emerged to systematically map them. Assessing the error of interaction networks has been a challenge. Crosslinking mass spectrometry is currently widening its scope from structural analyses of purified multi-protein complexes towards systems-wide analyses of protein-protein interactions (PPIs). Using a carefully controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate that false-discovery rates (FDR) for PPIs identified by crosslinking mass spectrometry can be reliably estimated. We present an interaction network comprising 590 PPIs at 1% decoy-based PPI-FDR. The structural information included in this network localises the binding site of the hitherto uncharacterised protein YacL to near the DNA exit tunnel on the RNA polymerase.TU Berlin, Open-Access-Mittel – 2021DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"DFG, 392923329, GRK 2473: Bioaktive Peptide - Innovative Aspekte zur Synthese und BiosyntheseDFG, 426290502, Erfassung der strukturellen Organisation des Mycoplasma pneumoniae Proteoms mittels in-Zell Crosslinking-Massenspektrometri
MR1-ligand cross-linking identifies vitamin B6 metabolites as TCR-reactive antigens
Major histocompatibility complex class I-related protein 1 (MR1) plays a central role in the immune recognition of infected cells and can mediate T cell detection of cancer. Knowledge of the nature of the ligands presented by MR1 is still sparse and has been limited by a lack of efficient approaches for MR1 ligand discovery. Here, we present a cross-linking strategy to investigate Schiff base-bound MR1 ligands. Our methodology employs reductive amination to stabilize the labile Schiff base bond between MR1 and its ligand, allowing for the detection of ligands as covalent MR1 adducts by mass spectrometry-based proteomics. We apply our approach to identifying vitamin B6 vitamers pyridoxal and pyridoxal 5′-phosphate (PLP) as MR1 ligands and show that both compounds are recognized by T cells expressing either A-F7, a mucosal-associated invariant T (MAIT) cell T cell receptor (TCR), or MC.7.G5, an MR1-restricted TCR reported to recognize cancer cells, highlighting them as immunogenic MR1 ligands
Finding and using diagnostic ions in collision induced crosslinked peptide fragmentation spectra.
Crosslinking mass spectrometry (XL-MS) has emerged as a powerful tool in its own right for the investigation of protein structures and interactions. Utilizing standard shotgun MS mass spectrometry equipment and specialized database search software, crosslinked peptide-pairs can be identified and directly translated into distance constraints for protein structure and protein-protein interaction investigations. Whereas the gas-phase dissociation behavior of linear peptides is well understood, less is however known about the gas-phase dissociation behavior of crosslinked peptides. In this work, we set out to expose the behavior of commonly used non-cleavable and gas-phase cleavable crosslinking reagents using synthetic peptides to establish mechanistic insights. We describe that crosslinked peptide pairs generate specific fragmentation patterns and diagnostic ions under HCD and CID fragmentation conditions, distinct from mono-linked peptide and non-modified peptides. We discuss in detail the resulting diagnostic ions that can help distinguishing linear peptides from mono-linked and crosslinked peptide pairs and how that may be used to further increase the efficiency of XL-MS analysis. (C) 2019 Elsevier B.V. All rights reserved
- …
