36 research outputs found
Long-term dispersion and availability of metals from submarine mine tailing disposal in a fjord in Arctic Norway
Minimal Holocene retreat of large tidewater glaciers in Køge Bugt, southeast Greenland
Abstract Køge Bugt, in southeast Greenland, hosts three of the largest glaciers of the Greenland Ice Sheet; these have been major contributors to ice loss in the last two decades. Despite its importance, the Holocene history of this area has not been investigated. We present a 9100 year sediment core record of glaciological and oceanographic changes from analysis of foraminiferal assemblages, the abundance of ice-rafted debris, and sortable silt grain size data. Results show that ice-rafted debris accumulated constantly throughout the core; this demonstrates that glaciers in Køge Bugt remained in tidewater settings throughout the last 9100 years. This observation constrains maximum Holocene glacier retreat here to less than 6 km from present-day positions. Retreat was minimal despite oceanic and climatic conditions during the early-Holocene that were at least as warm as the present-day. The limited Holocene retreat of glaciers in Køge Bugt was controlled by the subglacial topography of the area; the steeply sloping bed allowed glaciers here to stabilise during retreat. These findings underscore the need to account for individual glacier geometry when predicting future behaviour. We anticipate that glaciers in Køge Bugt will remain in stable configurations in the near-future, despite the predicted continuation of atmospheric and oceanic warming
Establishing percentile charts for hip joint capsule and synovial cavity thickness in apparently healthy children
Heavy-mineral analysis as a tool to trace the source areas of sediments in an ice-marginal valley, with an example from the Pleistocene of northwest Poland
AbstractThe ice caps that covered large parts of the continents of the northern hemisphere during the Pleistocene glaciations drained huge quantities of meltwater. In several places the erosive power of the meltwater rivers has led to the formation of ice-marginal valleys (IMVs). A much-debated question is whether sediments deposited in IMVs by proglacial and extraglacial streams can be distinguished on the basis of their heavy-mineral content. This question was assessed by an inventory of the heavy-mineral assemblages from the middle part of the Toruń-Eberswalde IMV in northwest Poland, two sandurs that supplied sediment from the north and the pre-Wisła river system that supplied sediment from the south; all these streams fed the IMV. The largely similar heavy-mineral compositions and sediments concentrations of the middle part of the IMV and sandurs suggest that the sediment in the IMV was supplied almost entirely by the streams on the sandurs but also that some sediments were eroded from the Miocene subsoil of the IMV itself and for a small part from the south by the pre-Wisła river system. The only heavy mineral in the pre-Wisła sediments for which the percentage is significantly different from those in the sediments of the sandurs and the IMV terrace is epidote. The difference, however, is not seen in the sediments of the IMV so it can be concluded that the sediment supply to the middle part of this IMV by streams from the south was insignificant. This is in contrast with what was hitherto commonly assumed.</jats:p
