218 research outputs found
Imprinting interference fringes in massive optomechanical systems
An interferometric scheme for the creation of momentum superposition states
of mechanical oscillators, using a quantum mirror kicked by free photons is
analyzed. The scheme features ultra-fast preparation with immediate detection
and should allow for the observation of signatures of momentum superpositions
in a massive macroscopic system at non-zero temperatures. It is robust against
thermalized initial states, displacement and movement, mirror imperfections,
and the measurements' back-actions.Comment: 4 pages, 3 figures, 7 subfigure
Optical Lenses for Atomic Beams
Superpositions of paraxial laser beam modes to generate atom-optical lenses
based on the optical dipole force are investigated theoretically. Thin, wide,
parabolic, cylindrical and circular atom lenses with numerical apertures much
greater than those reported in the literature to date can be synthesized. This
superposition approach promises to make high quality atom beam imaging and
nano-deposition feasible.Comment: 10 figure
On Visibility in the Afshar Two-Slit Experiment
A modified version of Young's experiment by Shahriar Afshar indirectly
reveals the presence of a fully articulated interference pattern prior to the
post-selection of a particle in a "which-slit" basis. While this experiment
does not constitute a violation of Bohr's Complementarity Principle as claimed
by Afshar, both he and many of his critics incorrectly assume that a commonly
used relationship between visibility parameter V and "which-way" parameter K
has crucial relevance to his experiment. It is argued here that this
relationship does not apply to this experimental situation and that it is wrong
to make any use of it in support of claims for or against the bearing of this
experiment on Complementarity.Comment: Final version; to appear in Foundations of Physic
Spectrum of light scattering from an extended atomic wave packet
The spectrum of the light scattered from an extended atomic wave packet is
calculated. For a wave packet consisting of two spatially separated peaks
moving on parallel trajectories, the spectrum contains Ramsey-like fringes that
are sensitive to the phase difference between the two components of the wave
packet. Using this technique, one can establish the mutual coherence of the two
components of the wave packet without recombining them.Comment: 4 page
Afshar's Experiment does not show a Violation of Complementarity
A recent experiment performed by S. Afshar [first reported by M. Chown, New
Scientist {\bf 183}, 30 (2004)] is analyzed. It was claimed that this
experiment could be interpreted as a demonstration of a violation of the
principle of complementarity in quantum mechanics. Instead, it is shown here
that it can be understood in terms of classical wave optics and the standard
interpretation of quantum mechanics. Its performance is quantified and it is
concluded that the experiment is suboptimal in the sense that it does not fully
exhaust the limits imposed by quantum mechanics.Comment: 6 pages, 6 figure
Approaching the Heisenberg limit with two mode squeezed states
Two mode squeezed states can be used to achieve Heisenberg limit scaling in
interferometry: a phase shift of can be
resolved. The proposed scheme relies on balanced homodyne detection and can be
implemented with current technology. The most important experimental
imperfections are studied and their impact quantified.Comment: 4 pages, 7 figure
Conditional generation of sub-Poissonian light from two-mode squeezed vacuum via balanced homodyne detection on idler mode
A simple scheme for conditional generation of nonclassical light with
sub-Poissonian photon-number statistics is proposed. The method utilizes
entanglement of signal and idler modes in two-mode squeezed vacuum state
generated in optical parametric amplifier. A quadrature component of the idler
mode is measured in balanced homodyne detector and only those experimental runs
where the absolute value of the measured quadrature is higher than certain
threshold are accepted. If the threshold is large enough then the conditional
output state of signal mode exhibits reduction of photon-number fluctuations
below the coherent-state level.Comment: 7 pages, 6 figures, REVTe
De Broglie Wavelength of a Nonlocal Four-Photon
Superposition is one of the most distinct features of quantum theory and has
been demonstrated in numerous realizations of Young's classical double-slit
interference experiment and its analogues. However, quantum entanglement - a
significant coherent superposition in multiparticle systems - yields phenomena
that are much richer and more interesting than anything that can be seen in a
one-particle system. Among them, one important type of multi-particle
experiments uses path-entangled number-states, which exhibit pure higher-order
interference and allow novel applications in metrology and imaging such as
quantum interferometry and spectroscopy with phase sensitivity at the
Heisenberg limit or quantum lithography beyond the classical diffraction limit.
Up to now, in optical implementations of such schemes lower-order interference
effects would always decrease the overall performance at higher particle
numbers. They have thus been limited to two photons. We overcome this
limitation and demonstrate a linear-optics-based four-photon interferometer.
Observation of a four-particle mode-entangled state is confirmed by
interference fringes with a periodicity of one quarter of the single-photon
wavelength. This scheme can readily be extended to arbitrary photon numbers and
thus represents an important step towards realizable applications with
entanglement-enhanced performance.Comment: 19 pages, 4 figures, submitted on November 18, 200
Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics
We develop the theory of canonical-dissipative systems, based on the
assumption that both the conservative and the dissipative elements of the
dynamics are determined by invariants of motion. In this case, known solutions
for conservative systems can be used for an extension of the dynamics, which
also includes elements such as the take-up/dissipation of energy. This way, a
rather complex dynamics can be mapped to an analytically tractable model, while
still covering important features of non-equilibrium systems. In our paper,
this approach is used to derive a rather general swarm model that considers (a)
the energetic conditions of swarming, i.e. for active motion, (b) interactions
between the particles based on global couplings. We derive analytical
expressions for the non-equilibrium velocity distribution and the mean squared
displacement of the swarm. Further, we investigate the influence of different
global couplings on the overall behavior of the swarm by means of
particle-based computer simulations and compare them with the analytical
estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref.
updated. For related work see also:
http://summa.physik.hu-berlin.de/~frank/active.htm
Linear optics substituting scheme for multi-mode operations
We propose a scheme allowing a conditional implementation of suitably
truncated general single- or multi-mode operators acting on states of traveling
optical signal modes. The scheme solely relies on single-photon and coherent
states and applies beam splitters and zero- and single-photon detections. The
signal flow of the setup resembles that of a multi-mode quantum teleportation
scheme thus allowing the individual signal modes to be spatially separated from
each other. Some examples such as the realization of cross-Kerr nonlinearities,
multi-mode mirrors, and the preparation of multi-photon entangled states are
considered.Comment: 11 pages, 4 eps-figures, using revtex
- …
