218 research outputs found

    Imprinting interference fringes in massive optomechanical systems

    Get PDF
    An interferometric scheme for the creation of momentum superposition states of mechanical oscillators, using a quantum mirror kicked by free photons is analyzed. The scheme features ultra-fast preparation with immediate detection and should allow for the observation of signatures of momentum superpositions in a massive macroscopic system at non-zero temperatures. It is robust against thermalized initial states, displacement and movement, mirror imperfections, and the measurements' back-actions.Comment: 4 pages, 3 figures, 7 subfigure

    Optical Lenses for Atomic Beams

    Get PDF
    Superpositions of paraxial laser beam modes to generate atom-optical lenses based on the optical dipole force are investigated theoretically. Thin, wide, parabolic, cylindrical and circular atom lenses with numerical apertures much greater than those reported in the literature to date can be synthesized. This superposition approach promises to make high quality atom beam imaging and nano-deposition feasible.Comment: 10 figure

    On Visibility in the Afshar Two-Slit Experiment

    Full text link
    A modified version of Young's experiment by Shahriar Afshar indirectly reveals the presence of a fully articulated interference pattern prior to the post-selection of a particle in a "which-slit" basis. While this experiment does not constitute a violation of Bohr's Complementarity Principle as claimed by Afshar, both he and many of his critics incorrectly assume that a commonly used relationship between visibility parameter V and "which-way" parameter K has crucial relevance to his experiment. It is argued here that this relationship does not apply to this experimental situation and that it is wrong to make any use of it in support of claims for or against the bearing of this experiment on Complementarity.Comment: Final version; to appear in Foundations of Physic

    Spectrum of light scattering from an extended atomic wave packet

    Full text link
    The spectrum of the light scattered from an extended atomic wave packet is calculated. For a wave packet consisting of two spatially separated peaks moving on parallel trajectories, the spectrum contains Ramsey-like fringes that are sensitive to the phase difference between the two components of the wave packet. Using this technique, one can establish the mutual coherence of the two components of the wave packet without recombining them.Comment: 4 page

    Afshar's Experiment does not show a Violation of Complementarity

    Full text link
    A recent experiment performed by S. Afshar [first reported by M. Chown, New Scientist {\bf 183}, 30 (2004)] is analyzed. It was claimed that this experiment could be interpreted as a demonstration of a violation of the principle of complementarity in quantum mechanics. Instead, it is shown here that it can be understood in terms of classical wave optics and the standard interpretation of quantum mechanics. Its performance is quantified and it is concluded that the experiment is suboptimal in the sense that it does not fully exhaust the limits imposed by quantum mechanics.Comment: 6 pages, 6 figure

    Approaching the Heisenberg limit with two mode squeezed states

    Get PDF
    Two mode squeezed states can be used to achieve Heisenberg limit scaling in interferometry: a phase shift of δϕ2.76/\delta \phi \approx 2.76 / can be resolved. The proposed scheme relies on balanced homodyne detection and can be implemented with current technology. The most important experimental imperfections are studied and their impact quantified.Comment: 4 pages, 7 figure

    Conditional generation of sub-Poissonian light from two-mode squeezed vacuum via balanced homodyne detection on idler mode

    Get PDF
    A simple scheme for conditional generation of nonclassical light with sub-Poissonian photon-number statistics is proposed. The method utilizes entanglement of signal and idler modes in two-mode squeezed vacuum state generated in optical parametric amplifier. A quadrature component of the idler mode is measured in balanced homodyne detector and only those experimental runs where the absolute value of the measured quadrature is higher than certain threshold are accepted. If the threshold is large enough then the conditional output state of signal mode exhibits reduction of photon-number fluctuations below the coherent-state level.Comment: 7 pages, 6 figures, REVTe

    De Broglie Wavelength of a Nonlocal Four-Photon

    Full text link
    Superposition is one of the most distinct features of quantum theory and has been demonstrated in numerous realizations of Young's classical double-slit interference experiment and its analogues. However, quantum entanglement - a significant coherent superposition in multiparticle systems - yields phenomena that are much richer and more interesting than anything that can be seen in a one-particle system. Among them, one important type of multi-particle experiments uses path-entangled number-states, which exhibit pure higher-order interference and allow novel applications in metrology and imaging such as quantum interferometry and spectroscopy with phase sensitivity at the Heisenberg limit or quantum lithography beyond the classical diffraction limit. Up to now, in optical implementations of such schemes lower-order interference effects would always decrease the overall performance at higher particle numbers. They have thus been limited to two photons. We overcome this limitation and demonstrate a linear-optics-based four-photon interferometer. Observation of a four-particle mode-entangled state is confirmed by interference fringes with a periodicity of one quarter of the single-photon wavelength. This scheme can readily be extended to arbitrary photon numbers and thus represents an important step towards realizable applications with entanglement-enhanced performance.Comment: 19 pages, 4 figures, submitted on November 18, 200

    Statistical Mechanics of Canonical-Dissipative Systems and Applications to Swarm Dynamics

    Full text link
    We develop the theory of canonical-dissipative systems, based on the assumption that both the conservative and the dissipative elements of the dynamics are determined by invariants of motion. In this case, known solutions for conservative systems can be used for an extension of the dynamics, which also includes elements such as the take-up/dissipation of energy. This way, a rather complex dynamics can be mapped to an analytically tractable model, while still covering important features of non-equilibrium systems. In our paper, this approach is used to derive a rather general swarm model that considers (a) the energetic conditions of swarming, i.e. for active motion, (b) interactions between the particles based on global couplings. We derive analytical expressions for the non-equilibrium velocity distribution and the mean squared displacement of the swarm. Further, we investigate the influence of different global couplings on the overall behavior of the swarm by means of particle-based computer simulations and compare them with the analytical estimations.Comment: 14 pages incl. 13 figures. v2: misprints in Eq. (40) corrected, ref. updated. For related work see also: http://summa.physik.hu-berlin.de/~frank/active.htm

    Linear optics substituting scheme for multi-mode operations

    Get PDF
    We propose a scheme allowing a conditional implementation of suitably truncated general single- or multi-mode operators acting on states of traveling optical signal modes. The scheme solely relies on single-photon and coherent states and applies beam splitters and zero- and single-photon detections. The signal flow of the setup resembles that of a multi-mode quantum teleportation scheme thus allowing the individual signal modes to be spatially separated from each other. Some examples such as the realization of cross-Kerr nonlinearities, multi-mode mirrors, and the preparation of multi-photon entangled states are considered.Comment: 11 pages, 4 eps-figures, using revtex
    corecore