1,463 research outputs found
Real-time sensing of optical alignment
The Large Deployable Reflector and other future segmented optical systems may require autonomous, real-time alignment of their optical surfaces. Researchers have developed gratings located directly on a mirror surface to provide interferometric sensing of the location and figure of the mirror. The grating diffracts a small portion of the incident beam to a diffractive focus where the designed diagnostics can be performed. Mirrors with diffraction gratings were fabricated in two separate ways. The formation of a holographic grating over the entire surface of a mirror, thereby forming a Zone Plate Mirror (ZPM) is described. Researchers have also used computer-generated hologram (CGH) patches for alignment and figure sensing of mirrors. When appropriately illuminated, a grid of patches spread over a mirror segment will yield a grid of point images at a wavefront sensor, with the relative location of the points providing information on the figure and location of the mirror. A particular advantage of using the CGH approach is that the holographic patches can be computed, fabricated, and replicated on a mirror segment in a mass production 1-g clean room environment
Terahertz dynamics of a topologically protected state: quantum Hall effect plateaus near cyclotron resonance in a GaAs/AlGaAs heterojunction
We measure the Hall conductivity of a two-dimensional electron gas formed at
a GaAs/AlGaAs heterojunction in the terahertz regime close to the cyclotron
resonance frequency by employing a highly sensitive Faraday rotation method
coupled with electrical gating of the sample to change the electron density. We
observe clear plateau-and step-like features in the Faraday rotation angle vs.
electron density and magnetic field (Landau-level filling factor), which are
the high frequency manifestation of quantum Hall plateaus - a signature of
topologically protected edge states. The results are compared to a recent
dynamical scaling theory.Comment: 18 pages, 3 figure
Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields
In semiconductor physics, many essential optoelectronic material parameters
can be experimentally revealed via optical spectroscopy in sufficiently large
magnetic fields. For monolayer transition-metal dichalcogenide semiconductors,
this field scale is substantial --tens of teslas or more-- due to heavy carrier
masses and huge exciton binding energies. Here we report absorption
spectroscopy of monolayer MoS, MoSe, MoTe, and WS in very high
magnetic fields to 91~T. We follow the diamagnetic shifts and valley Zeeman
splittings of not only the exciton's ground state but also its excited
, , ..., Rydberg states. This provides a direct experimental
measure of the effective (reduced) exciton masses and dielectric properties.
Exciton binding energies, exciton radii, and free-particle bandgaps are also
determined. The measured exciton masses are heavier than theoretically
predicted, especially for Mo-based monolayers. These results provide essential
and quantitative parameters for the rational design of opto-electronic van der
Waals heterostructures incorporating 2D semiconductors.Comment: updated; now also including data on MoTe2. Accepted & in press,
Nature Commu
Mixed-Valence-Driven Heavy-Fermion Behavior and Superconductivity in KNiSe
Based on specific heat and magnetoresistance measurements, we report that a
"heavy" electronic state exists below 20 K in KNiSe, with
an increased carrier mobility and enhanced effective electronic band mass, *
= 6 to 18. This "heavy" state evolves into superconductivity at
= 0.80(1) K. These properties resemble that of a many-body heavy-fermion state,
which derives from the hybridization between localized magnetic states and
conduction electrons. Yet, no evidence for localized magnetism or magnetic
order is found in KNiSe from magnetization measurements or neutron
diffraction. Instead, neutron pair-distribution-function analysis reveals the
presence of local charge-density-wave distortions that disappear on cooling, an
effect opposite to what is typically observed, suggesting that the
low-temperature electronic state of KNiSe arises from cooperative
Coulomb interactions and proximity to, but avoidance of, charge order
Eight-band calculations of strained InAs/GaAs quantum dots compared with one, four, and six-band approximations
The electronic structure of pyramidal shaped InAs/GaAs quantum dots is
calculated using an eight-band strain dependent Hamiltonian. The
influence of strain on band energies and the conduction-band effective mass are
examined. Single particle bound-state energies and exciton binding energies are
computed as functions of island size. The eight-band results are compared with
those for one, four and six bands, and with results from a one-band
approximation in which m(r) is determined by the local value of the strain. The
eight-band model predicts a lower ground state energy and a larger number of
excited states than the other approximations.Comment: 8 pages, 7 figures, revtex, eps
Tight-Binding model for semiconductor nanostructures
An empirical tight-binding (TB) model is applied to the
investigation of electronic states in semiconductor quantum dots. A basis set
of three -orbitals at the anions and one -orbital at the cations is
chosen. Matrix elements up to the second nearest neighbors and the spin-orbit
coupling are included in our TB-model. The parametrization is chosen so that
the effective masses, the spin-orbit-splitting and the gap energy of the bulk
CdSe and ZnSe are reproduced. Within this reduced TB-basis the
valence (p-) bands are excellently reproduced and the conduction (s-) band is
well reproduced close to the -point, i.e. near to the band gap. In
terms of this model much larger systems can be described than within a (more
realistic) -basis. The quantum dot is modelled by using the (bulk)
TB-parameters for the particular material at those sites occupied by atoms of
this material. Within this TB-model we study pyramidal-shaped CdSe quantum dots
embedded in a ZnSe matrix and free spherical CdSe quantum dots (nanocrystals).
Strain-effects are included by using an appropriate model strain field. Within
the TB-model, the strain-effects can be artifically switched off to investigate
the infuence of strain on the bound electronic states and, in particular, their
spatial orientation. The theoretical results for spherical nanocrystals are
compared with data from tunneling spectroscopy and optical experiments.
Furthermore the influence of the spin-orbit coupling is investigated
Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair
Treatment of spontaneous preterm labour with retosiban: a phase 2 proof-of-concept study
This is the peer reviewed version of the article which has been published in final form at doi: 10.1111/bcp.12646. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.AIM: To investigate the efficacy and safety of intravenous retosiban in women with spontaneous preterm labour. METHODS: Randomised, double-blind, placebo-controlled, phase 2 trial. Retosiban was administered intravenously for 48 hours to women in spontaneous preterm labour between 30(0/7) and 35(6/7) weeks' gestation with an uncomplicated singleton pregnancy in an in-patient obstetric unit. Outcome measures were uterine quiescence (primary endpoint), days to delivery, preterm delivery, and safety. RESULTS: Uterine quiescence was achieved in 62% of women who received retosiban (n = 30) compared with 41% who received placebo (n = 34). The relative risk (RR) was 1.53 (95% credible interval [CrI]: 0.98, 2.48; NS). Retosiban resulted in a significant increase in time to delivery compared with placebo (mean difference, 8.2 days; 95% CrI: 2.7, 13.74); this difference was consistent across all gestational ages. The proportion of preterm births in the retosiban and placebo groups was 18.7% (95% CrI: 7.4%, 33.7%) and 47.2% (95% CrI: 31.4%, 63.4%), respectively. The RR of preterm birth in women treated with retosiban was 0.38 (95% CrI: 0.15, 0.81). There were no deliveries within 7 days in the retosiban group, but there were six (17.6%) births in the placebo group. Maternal, fetal, and neonatal adverse events were similar in the retosiban and placebo groups. CONCLUSIONS: Intravenous administration of retosiban in women with spontaneous preterm labour was associated with a greater than 1-week increase in time to delivery compared with placebo, a significant reduction in preterm deliveries, a non-significant increase in uterine quiescence, and a favourable safety profile.GlaxoSmithKlin
Single and vertically coupled type II quantum dots in a perpendicular magnetic field: exciton groundstate properties
The properties of an exciton in a type II quantum dot are studied under the
influence of a perpendicular applied magnetic field. The dot is modelled by a
quantum disk with radius , thickness and the electron is confined in the
disk, whereas the hole is located in the barrier. The exciton energy and
wavefunctions are calculated using a Hartree-Fock mesh method. We distinguish
two different regimes, namely (the hole is located at the radial
boundary of the disk) and (the hole is located above and below the
disk), for which angular momentum transitions are predicted with
increasing magnetic field. We also considered a system of two vertically
coupled dots where now an extra parameter is introduced, namely the interdot
distance . For each and for a sufficient large magnetic field,
the ground state becomes spontaneous symmetry broken in which the electron and
the hole move towards one of the dots. This transition is induced by the
Coulomb interaction and leads to a magnetic field induced dipole moment. No
such symmetry broken ground states are found for a single dot (and for three
vertically coupled symmetric quantum disks). For a system of two vertically
coupled truncated cones, which is asymmetric from the start, we still find
angular momentum transitions. For a symmetric system of three vertically
coupled quantum disks, the system resembles for small the pillar-like
regime of a single dot, where the hole tends to stay at the radial boundary,
which induces angular momentum transitions with increasing magnetic field. For
larger the hole can sit between the disks and the state
remains the groundstate for the whole -region.Comment: 11 pages, 16 figure
Anomalous quantum confined Stark effects in stacked InAs/GaAs self-assembled quantum dots
Vertically stacked and coupled InAs/GaAs self-assembled quantum dots (SADs)
are predicted to exhibit a strong non-parabolic dependence of the interband
transition energy on the electric field, which is not encountered in single SAD
structures nor in other types of quantum structures. Our study based on an
eight-band strain-dependent Hamiltonian indicates that
this anomalous quantum confined Stark effect is caused by the three-dimensional
strain field distribution which influences drastically the hole states in the
stacked SAD structures.Comment: 4 pages, 4 figure
- …
