326 research outputs found
The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization, secondary chemistry, and the role of particle phase
International audienceWe studied the OH oxidation of submicron aerosol particles consisting of pure palmitic acid (PA) or thin (near monolayer) coatings of PA on aqueous and effloresced inorganic salt particles. Experiments were performed as a function of particle size and OH exposure using a continuous-flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS) system, for detection of gas and particle-bound organics, and a DMA/CPC for monitoring particle size distributions. The loss rate of PA observed for pure PA aerosols and PA on crystalline NaCl aerosols indicates that the OH oxidation of PA at the gas-aerosol interface is efficient. The pure PA oxidation data are well represented by a model consisting of four main processes: 1) surface-only reactions between OH and palmitic acid, 2) secondary reactions between palmitic acid and OH oxidation products, 3) volatilization of condensed-phase mass, and 4) a surface renewal process. Using this model we infer a value of ?OH between 0.8 and 1. The oxidation of palmitic acid in thin film coatings of salt particles is also efficient, though the inferred ?OH is lower, ranging from ~0.3 (+0.1/?0.05) for coatings on solid NaCl and ~0.05 (±0.01) on aqueous NaCl particles. These results, together with simultaneous data on particle size change and volatilized oxidation products, provide support for the ideas that oxidative aging of aliphatic organic aerosol is a source of small oxidized volatile organic compounds (OVOCs), and that OH oxidation may initiate secondary condensed-phase reactions
On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields
We study the energy transfer performance in electrically and magnetically
coupled mechanical nanoresonators. Using the resonant scattering theory, we
show that magnetically coupled resonators can achieve the same energy transfer
performance as for their electrically coupled counterparts, or even outperform
them within the scale of interest. Magnetic and electric coupling are compared
in the Nanotube Radio, a realistic example of a nano-scale mechanical
resonator. The energy transfer performance is also discussed for a newly
proposed bio-nanoresonator composed of a magnetosomes coated with a net of
protein fibers.Comment: 9 Pages, 3 Figure
Dissipative Van der Waals interaction between a small particle and a metal surface
We use a general theory of the fluctuating electromagnetic field to calculate
the friction force acting on a small neutral particle, e.g., a physisorbed
molecule, or a nanoscale object with arbitrary dispersive and absorptive
dielectric properties, moving near a metal surface. We consider the dependence
of the electromagnetic friction on the temperature , the separation , and
discuss the role of screening, non-local and retardation effects. We find that
for high resistivity materials, the dissipative van der Waals interaction can
be an important mechanism of vibrational energy relaxation of physisorbed
molecules, and friction for microscopic solids. Several controversial topics
related to electromagnetic dissipative shear stress is considered. The problem
of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure
Optical Detection of a Single Nuclear Spin
We propose a method to optically detect the spin state of a 31-P nucleus
embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the
31-P neutral-donor ground state can be resolved via a direct frequency
discrimination measurement of the 31-P bound exciton photoluminescence using
single photon detectors. The measurement time is expected to be shorter than
the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure
Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames
We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10[superscript 6] s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale
Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy
A requirement for many quantum computation schemes is the ability to measure
single spins. This paper examines one proposed scheme: magnetic resonance force
microscopy, including the effects of thermal noise and back-action from
monitoring. We derive a simplified equation using the adiabatic approximation,
and produce a stochastic pure state unraveling which is useful for numerical
simulations.Comment: 33 pages LaTeX, 9 figure files in EPS format. Submitted to Physical
Review
First principles theory of inelastic currents in a scanning tunneling microscope
A first principles theory of inelastic tunneling between a model probe tip
and an atom adsorbed on a surface is presented, extending the elastic tunneling
theory of Tersoff and Hamann. The inelastic current is proportional to the
change in the local density of states at the center of the tip due to the
addition of the adsorbate. We use the theory to investigate the vibrational
heating of an adsorbate below an STM tip. We calculate the desorption rate of H
from Si(100)-H(21) as function of the sample bias and tunnel current,
and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file
Quantum transport through STM-lifted single PTCDA molecules
Using a scanning tunneling microscope we have measured the quantum
conductance through a PTCDA molecule for different configurations of the
tip-molecule-surface junction. A peculiar conductance resonance arises at the
Fermi level for certain tip to surface distances. We have relaxed the molecular
junction coordinates and calculated transport by means of the Landauer/Keldysh
approach. The zero bias transmission calculated for fixed tip positions in
lateral dimensions but different tip substrate distances show a clear shift and
sharpening of the molecular chemisorption level on increasing the STM-surface
distance, in agreement with experiment.Comment: accepted for publication in Applied Physics
Electron Standing Wave Formation in Atomic Wires
Using the Landauer formulation of transport theory and tight binding models
of the electronic structure, we study electron transport through atomic wires
that form 1D constrictions between pairs of metallic nano-contacts. Our results
are interpreted in terms of electron standing waves formed in the atomic wires
due to interference of electron waves reflected at the ends of the atomic
constrictions. We explore the influence of the chemistry of the atomic
wire-metal contact interfaces on these standing waves and the associated
transport resonances by considering two types of atomic wires: gold wires
attached to gold contacts and carbon wires attached to gold contacts. We find
that the conductance of the gold wires is roughly for the
wire lengths studied, in agreement with experiments. By contrast, for the
carbon wires the conductance is found to oscillate strongly as the number of
atoms in the wire varies, the odd numbered chains being more conductive than
the even numbered ones, in agreement with previous theoretical work that was
based on a different model of the carbon wire and metal contacts.Comment: 14 pages, includes 6 figure
Tuning a Resonance in the Fock Space: Optimization of Phonon Emission in a Resonant Tunneling Device
Phonon-assisted tunneling in a double barrier resonant tunneling device can
be seen as a resonance in the electron-phonon Fock space which is tuned by the
applied voltage. We show that the geometrical parameters can induce a symmetry
condition in this space that can strongly enhance the emission of longitudinal
optical phonons. For devices with thin emitter barriers this is achieved by a
wider collector's barrier.Comment: 4 pages, 3 figures. Figure 1 changed, typos correcte
- …
