326 research outputs found

    The heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization, secondary chemistry, and the role of particle phase

    No full text
    International audienceWe studied the OH oxidation of submicron aerosol particles consisting of pure palmitic acid (PA) or thin (near monolayer) coatings of PA on aqueous and effloresced inorganic salt particles. Experiments were performed as a function of particle size and OH exposure using a continuous-flow photochemical reaction chamber coupled to a chemical ionization mass spectrometer (CIMS) system, for detection of gas and particle-bound organics, and a DMA/CPC for monitoring particle size distributions. The loss rate of PA observed for pure PA aerosols and PA on crystalline NaCl aerosols indicates that the OH oxidation of PA at the gas-aerosol interface is efficient. The pure PA oxidation data are well represented by a model consisting of four main processes: 1) surface-only reactions between OH and palmitic acid, 2) secondary reactions between palmitic acid and OH oxidation products, 3) volatilization of condensed-phase mass, and 4) a surface renewal process. Using this model we infer a value of ?OH between 0.8 and 1. The oxidation of palmitic acid in thin film coatings of salt particles is also efficient, though the inferred ?OH is lower, ranging from ~0.3 (+0.1/?0.05) for coatings on solid NaCl and ~0.05 (±0.01) on aqueous NaCl particles. These results, together with simultaneous data on particle size change and volatilized oxidation products, provide support for the ideas that oxidative aging of aliphatic organic aerosol is a source of small oxidized volatile organic compounds (OVOCs), and that OH oxidation may initiate secondary condensed-phase reactions

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    Dissipative Van der Waals interaction between a small particle and a metal surface

    Full text link
    We use a general theory of the fluctuating electromagnetic field to calculate the friction force acting on a small neutral particle, e.g., a physisorbed molecule, or a nanoscale object with arbitrary dispersive and absorptive dielectric properties, moving near a metal surface. We consider the dependence of the electromagnetic friction on the temperature TT, the separation dd, and discuss the role of screening, non-local and retardation effects. We find that for high resistivity materials, the dissipative van der Waals interaction can be an important mechanism of vibrational energy relaxation of physisorbed molecules, and friction for microscopic solids. Several controversial topics related to electromagnetic dissipative shear stress is considered. The problem of local heating of the surface by an STM tip is also briefly commented on.Comment: 11 pages, No figure

    Optical Detection of a Single Nuclear Spin

    Full text link
    We propose a method to optically detect the spin state of a 31-P nucleus embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the 31-P neutral-donor ground state can be resolved via a direct frequency discrimination measurement of the 31-P bound exciton photoluminescence using single photon detectors. The measurement time is expected to be shorter than the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure

    Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Get PDF
    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10[superscript 6] s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale

    Realistic simulations of single-spin nondemolition measurement by magnetic resonance force microscopy

    Get PDF
    A requirement for many quantum computation schemes is the ability to measure single spins. This paper examines one proposed scheme: magnetic resonance force microscopy, including the effects of thermal noise and back-action from monitoring. We derive a simplified equation using the adiabatic approximation, and produce a stochastic pure state unraveling which is useful for numerical simulations.Comment: 33 pages LaTeX, 9 figure files in EPS format. Submitted to Physical Review

    First principles theory of inelastic currents in a scanning tunneling microscope

    Get PDF
    A first principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below an STM tip. We calculate the desorption rate of H from Si(100)-H(2×\times1) as function of the sample bias and tunnel current, and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file

    Quantum transport through STM-lifted single PTCDA molecules

    Full text link
    Using a scanning tunneling microscope we have measured the quantum conductance through a PTCDA molecule for different configurations of the tip-molecule-surface junction. A peculiar conductance resonance arises at the Fermi level for certain tip to surface distances. We have relaxed the molecular junction coordinates and calculated transport by means of the Landauer/Keldysh approach. The zero bias transmission calculated for fixed tip positions in lateral dimensions but different tip substrate distances show a clear shift and sharpening of the molecular chemisorption level on increasing the STM-surface distance, in agreement with experiment.Comment: accepted for publication in Applied Physics

    Electron Standing Wave Formation in Atomic Wires

    Full text link
    Using the Landauer formulation of transport theory and tight binding models of the electronic structure, we study electron transport through atomic wires that form 1D constrictions between pairs of metallic nano-contacts. Our results are interpreted in terms of electron standing waves formed in the atomic wires due to interference of electron waves reflected at the ends of the atomic constrictions. We explore the influence of the chemistry of the atomic wire-metal contact interfaces on these standing waves and the associated transport resonances by considering two types of atomic wires: gold wires attached to gold contacts and carbon wires attached to gold contacts. We find that the conductance of the gold wires is roughly 1G0=2e2/h1 G_0 = 2 e^2/h for the wire lengths studied, in agreement with experiments. By contrast, for the carbon wires the conductance is found to oscillate strongly as the number of atoms in the wire varies, the odd numbered chains being more conductive than the even numbered ones, in agreement with previous theoretical work that was based on a different model of the carbon wire and metal contacts.Comment: 14 pages, includes 6 figure

    Tuning a Resonance in the Fock Space: Optimization of Phonon Emission in a Resonant Tunneling Device

    Full text link
    Phonon-assisted tunneling in a double barrier resonant tunneling device can be seen as a resonance in the electron-phonon Fock space which is tuned by the applied voltage. We show that the geometrical parameters can induce a symmetry condition in this space that can strongly enhance the emission of longitudinal optical phonons. For devices with thin emitter barriers this is achieved by a wider collector's barrier.Comment: 4 pages, 3 figures. Figure 1 changed, typos correcte
    corecore