2,995 research outputs found
Magneto-x-ray effects in transition-metal alloys
We present a theory that combines the relativistic spin-polarized version of the Koringa-Kohn-Rostoker coherent-potential approximation theory and the macroscopic theory of magneto-optical effects enabling us to calculate magneto-x-ray effects from first principles. The theory is illustrated by calculation of Faraday and Kerr rotations and ellipticities for transition-metal alloys
Observation of magnetic circular dichroism in Fe L_{2,3} x-ray-fluorescence spectra
We report experiments demonstrating circular dichroism in the x-ray-fluorescence spectra of magnetic systems, as predicted by a recent theory. The data, on the L_{2,3} edges of ferromagnetic iron, are compared with fully relativistic local spin density functional calculations, and the relationship between the dichroic spectra and the spin-resolved local density of occupied states is discussed
Interpretation of x-ray-absorption dichroism experiments
A rule is derived to use x-ray magnetic circular dichroism spectra to extract the magnetic moment of the conduction-band states with j= l -1/2 separately from those with j= l + 1/2 as a function of energy. This quantity is straightforward to determine from the electronic band structure. The rule is illustrated with an application to pure iron and to the random substitutional alloy Fe_{80}CO_{20}
Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements
The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles
Bound states of bosons and fermions in a mixed vector-scalar coupling with unequal shapes for the potentials
The Klein-Gordon and the Dirac equations with vector and scalar potentials
are investigated under a more general condition, . These intrinsically relativistic and isospectral problems
are solved in a case of squared hyperbolic potential functions and bound states
for either particles or antiparticles are found. The eigenvalues and
eigenfuntions are discussed in some detail and the effective Compton wavelength
is revealed to be an important physical quantity. It is revealed that a boson
is better localized than a fermion when they have the same mass and are
subjected to the same potentials.Comment: 3 figure
Payload/orbiter contamination control requirement study: Spacelab configuration contamination study
The assessment of the Spacelab carrier induced contaminant environment was continued, and the ability of Spacelab to meet established contamination control criteria for the space transportation system program was determined. The primary areas considered included: (1) updating, refining, and improving the Spacelab contamination computer model and contamination analysis methodology, (2) establishing the resulting adjusted induced environment predictions for comparison with the applicable criteria, (3) determining the Spacelab design and operational requirements necessary to meet the criteria, (4) conducting mission feasibility analyses of the combined Spacelab/Orbiter contaminant environment for specific proposed mission and payload mixes, and (5) establishing a preliminary Spacelab mission support plan as well as model interface requirements; A summary of those activities conducted to date with respect to the modelling, analysis, and predictions of the induced environment, including any modifications in approach or methodology utilized in the contamination assessment of the Spacelab carrier, was presented
The effect of photobleaching on bee (Hymenoptera: Apoidea) setae color and its implications for studying aging and behavior
Historically, bee age has been estimated using measurements of wing wear and integument color change. These measurements have been useful in studies of foraging ecology and plant-pollinator interactions. Wing wear is speculated to be affected by the behaviors associated with foraging, nesting, and mating activities. Setal color change may be an additional parameter used to measure bee age if it is affected by sun exposure during these same activities. The objectives of this study were to experimentally assess the effect of direct sun exposure on setal color, unicellular hair-like processes of the integument, and determine whether wing wear and integument photobleaching are correlated. To quantify photobleaching of setae, we measured changes in hue of lab-reared Bombus huntii Greene (Apidae) exposed to natural sunlight. We found that sun exposure was a significant variable in determining setal bleaching. To assess the relationship between wing wear and setal photobleaching, we scored wing wear and measured setal hue of B. huntii, Melecta pacifica fulvida Cresson (Apidae), and Osmia integra Cresson (Megachilidae) from museum specimens. Wing wear and setal hue values were positively correlated for all three species; however, the strength of the relationship varies across bee species as indicated by correlation coefficient estimates. Our results suggest that setal color change is affected by sun exposure, and is likely an accurate estimate of bee age. We suggest that future investigations of bee aging consider a suite of morphometric characteristics due to differences in natural history and sociobiology that may be confounded by the use of a single characteristic
Payload/orbiter contamination control requirement study: Computer interface
A preliminary assessment of the computer interface requirements of the Spacelab configuration contamination computer model was conducted to determine the compatibility of the program, as presently formatted, with the computer facilities at MSFC. The necessary Spacelab model modifications are pointed out. The MSFC computer facilities and their future plans are described, and characteristics of the various computers as to availability and suitability for processing the contamination program are discussed. A listing of the CDC 6000 series and UNIVAC 1108 characteristics is presented so that programming requirements can be compared directly and differences noted
An embedding scheme for the Dirac equation
An embedding scheme is developed for the Dirac Hamiltonian H. Dividing space
into regions I and II separated by surface S, an expression is derived for the
expectation value of H which makes explicit reference to a trial function
defined in I alone, with all details of region II replaced by an effective
potential acting on S and which is related to the Green function of region II.
Stationary solutions provide approximations to the eigenstates of H within I.
The Green function for the embedded Hamiltonian is equal to the Green function
for the entire system in region I. Application of the method is illustrated for
the problem of a hydrogen atom in a spherical cavity and an Au(001)/Ag/Au(001)
sandwich structure using basis sets that satisfy kinetic balance.Comment: 16 pages, 5 figure
- …
