3,096 research outputs found
Performance characteristics of wind profiling radars
Doppler radars used to measure winds in the troposphere and lower stratosphere for weather analysis and forecasting are lower-sensitivity versions of mesosphere-stratosphere-troposphere radars widely used for research. The term wind profiler is used to denote these radars because measurements of vertical profiles of horizontal and vertical wind are their primary function. It is clear that wind profilers will be in widespread use within five years: procurement of a network of 30 wind profilers is underway. The Wave Propagation Laboratory (WPL) has operated a small research network of radar wind profilers in Colorado for about two and one-half years. The transmitted power and antenna aperture for these radars is given. Data archiving procedures have been in place for about one year, and this data base is used to evaluate the performance of the radars. One of the prime concerns of potential wind profilers users is how often and how long wind measurements are lacking at a given height. Since these outages constitute an important part of the performance of the wind profilers, they are calculated at three radar frequencies, 50-, 405-, and 915-MHz, (wavelengths of 6-, 0.74-, and 0.33-m) at monthly intervals to determine both the number of outages at each frequency and annual variations in outages
East Germany: Transition with Unification ; Experiments and Experiences
--Economic transition,public finance
A relativistic Glauber approach to polarization transfer in 4He(\vec{e},e'\vec{p})
Polarization-transfer components for 4He(\vec{e},e'\vec{p})3H are computed
within the relativistic multiple-scattering Glauber approximation (RMSGA). The
RMSGA framework adopts relativistic single-particle wave functions and
electron-nucleon couplings. The predictions with free and various
parametrizations for the medium-modified electromagnetic form factors are
compared to the world data.Comment: 2 pages, 1 figure Proceedings of the Int. School on Nuclear Physics,
26th Course, Erice (Sicily), September 16th- 24th, 2004; To appear in
Progress in Particle and Nuclear Physic
Polarization Observables for Two-Pion Production off the Nucleon
We develop polarization observables for the processes
and , using both a helicity and hybrid helicity-transversity
basis. Such observables are crucial if processes that produce final states
consisting of a spin-1/2 baryon and two pseudoscalar mesons are to be fully
exploited for baryon spectroscopy. We derive relationships among the
observables, as well as inequalities that they must satisfy. We also discuss
the observables that must be measured in `complete' experiments, and briefly
examine the prospects for measurement of some of these observables in the near
future.Comment: 20 pages, using revtex
Performance of the Colorado wind-profiling network, part 1.5A
The Wave Propagation Laboratory (WPL) has operated a network of radar wind Profilers in Colorado for about 1 year. The network consists of four VHF (50-MHz) radars and a UHF (915-MHz) radar. The Platteville VHF radar was developed by the Aeronomy Laboratory (AL) and has been operated jointly by WPL and AL for several years. The other radars were installed between February and May 1983. Experiences with these radars and some general aspects of tropospheric wind measurements with Doppler radar are discussed
Strong-field effects in the Rabi oscillations of the superconducting phase qubit
Rabi oscillations have been observed in many superconducting devices, and
represent prototypical logic operations for quantum bits (qubits) in a quantum
computer. We use a three-level multiphoton analysis to understand the behavior
of the superconducting phase qubit (current-biased Josephson junction) at high
microwave drive power. Analytical and numerical results for the ac Stark shift,
single-photon Rabi frequency, and two-photon Rabi frequency are compared to
measurements made on a dc SQUID phase qubit with Nb/AlOx/Nb tunnel junctions.
Good agreement is found between theory and experiment.Comment: 4 pages, 4 figures, accepted for publication in IEEE Trans. Appl.
Supercon
Alterations in vascular function in primary aldosteronism - a cardiovascular magnetic resonance imaging study
Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV).<p></p>
Methods: We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass.<p></p>
Results: Subjects with PA had significantly lower aortic distensibilty and higher PWV compared to EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including aging. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular aging. As expected, aortic distensibility and PWV were closely correlated.<p></p>
Conclusion: These results demonstrate that PA patients display increased arterial stiffness compared to EH, independent of vascular aging. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study.<p></p>
Direct SUSY dark matter detection-Theoretical rates due to the spin
The recent WMAP data have confirmed that exotic dark matter together with the
vacuum energy (cosmological constant) dominate in the flat Universe. Thus the
direct dark matter detection, consisting of detecting the recoiling nucleus, is
central to particle physics and cosmology. Supersymmetry provides a natural
dark matter candidate, the lightest supersymmetric particle (LSP). The relevant
cross sections arise out of two mechanisms: i) The coherent mode, due to the
scalar interaction and ii) The spin contribution arising from the axial
current. In this paper we will focus on the spin contribution, which is
expected to dominate for light targets.
For both modes it is possible to obtain detectable rates, but in most models
the expected rates are much lower than the present experimental goals. So one
should exploit two characteristic signatures of the reaction, namely the
modulation effect and, in directional experiments, the correlation of the event
rates with the sun's motion.
In standard non directional experiments the modulation is small, less than
two per cent. In the case of the directional event rates we like to suggest
that the experiments exploit two features, of the process, which are
essentially independent of the SUSY model employed, namely: 1) The
forward-backward asymmetry, with respect to the sun's direction of motion, is
very large and 2) The modulation is much larger, especially if the observation
is made in a plane perpendicular to the sun's velocity. In this case the
difference between maximum and minimum can be larger than 40 per cent and the
phase of the Earth at the maximum is direction dependent.Comment: 16 Latex pages, 15 figures, 3 table
Pulsed Feedback Defers Cellular Differentiation
Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle
- …
