32 research outputs found

    Global survival trends for brain tumors, by histology: analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000–2014 (CONCORD-3)

    Get PDF
    Background: Survival is a key metric of the effectiveness of a health system in managing cancer. We set out to provide a comprehensive examination of worldwide variation and trends in survival from brain tumors in adults, by histology. Methods: We analyzed individual data for adults (15–99 years) diagnosed with a brain tumor (ICD-O-3 topography code C71) during 2000–2014, regardless of tumor behavior. Data underwent a 3-phase quality control as part of CONCORD-3. We estimated net survival for 11 histology groups, using the unbiased nonparametric Pohar Perme estimator. Results: The study included 556,237 adults. In 2010–2014, the global range in age-standardized 5-year net survival for the most common sub-types was broad: in the range 20%–38% for diffuse and anaplastic astrocytoma, from 4% to 17% for glioblastoma, and between 32% and 69% for oligodendroglioma. For patients with glioblastoma, the largest gains in survival occurred between 2000–2004 and 2005–2009. These improvements were more noticeable among adults diagnosed aged 40–70 years than among younger adults. Conclusions: To the best of our knowledge, this study provides the largest account to date of global trends in population-based survival for brain tumors by histology in adults. We have highlighted remarkable gains in 5-year survival from glioblastoma since 2005, providing large-scale empirical evidence on the uptake of chemoradiation at population level. Worldwide, survival improvements have been extensive, but some countries still lag behind. Our findings may help clinicians involved in national and international tumor pathway boards to promote initiatives aimed at more extensive implementation of clinical guidelines

    Use of portable exposimeters to monitor radiofrequency electromagnetic field exposure in the everyday environment

    No full text
    Background: Spatial and temporal distribution of radiofrequency electromagnetic field (RF-EMF) levels in the environment is highly heterogeneous. It is thus not entirely clear how to monitor spatial variability and temporal trends of RF-EMF exposure levels in the environment in a representative and efficient manner. The aim of this study was to test a monitoring protocol for RF-EMF measurements in public areas using portable devices. Methods: Using the ExpoM-RF devices mounted on a backpack, we have conducted RF-EMF measurements by walking through 51 different outdoor microenvironments from 20 different municipalities in Switzerland: 5 different city centers, 5 central residential areas, 5 non-central residential areas, 15 rural residential areas, 15 rural centers and 6 industrial areas. Measurements in public transport (buses, trains, trams) were collected when traveling between the areas. Measurements were conducted between 25th March and 11th July 2014. In order to evaluate spatial representativity within one microenvironment, we measured two crossing paths of about 1 km in length in each microenvironment. To evaluate repeatability, measurements in each microenvironment were repeated after two to four months on the same paths. Results: Mean RF-EMF exposure (sum of 15 main frequency bands between 87.5 and 5,875 MHz) was 0.53 V/m in industrial zones, 0.47 V/m in city centers, 0.32 V/m in central residential areas, 0.25 V/m non-central residential areas, 0.23 V/m in rural centers and rural residential areas, 0.69 V/m in trams, 0.46 V/m in trains and 0.39 V/m in buses. Major exposure contribution at outdoor locations was from mobile phone base stations (>80% for all outdoor areas with respect to the power density scale). Temporal correlation between first and second measurement of each area was high: 0.89 for total RF-EMF, 0.90 for all five mobile phone downlink bands combined, 0.51 for all five uplink bands combined and 0.79 for broadcasting. Spearman correlation between arithmetic mean values of the first path compared to arithmetic mean of the second path within the same microenvironment was 0.75 for total RF-EMF, 0.76 for all five mobile phone downlink bands combined, 0.55 for all five uplink bands combined and 0.85 for broadcasting (FM and DVB-T). Conclusions: This study demonstrates that microenvironmental surveys using a portable device yields highly repeatable measurements, which allows monitoring time trends of RF-EMF exposure over an extended time period of several years and to compare exposure levels between different types of microenvironments

    Strichprobenkonzept für Messungen der nicht-ionisierenden Strahlung mit Exposimetern

    No full text

    Stichprobenkonzept für Messungen der nicht-ionisierenden Strahlung mit Exposimetern

    No full text
    corecore