12 research outputs found

    A Unique Regulator Contributes to Quorum Sensing and Virulence in Burkholderia cenocepacia

    Get PDF
    Burkholderia cenocepacia causes chronic and life-threatening respiratory infections in immunocompromized people. The B. cenocepacia N-acyl-homoserine lactone (AHL)-dependent quorum sensing system relies on the production of AHLs by the synthases CepI and CciI while CepR, CciR and CepR2 control expression of many genes important for pathogenesis. Downstream from, and co-transcribed with cepI, lies BCAM1871 encoding a hypothetical protein that was uncharacterized prior to this study. Orthologs of B. cenocepacia BCAM1871 are uniquely found in Burkholderia spp and are conserved in their genomic locations in pathogenic Burkholderia. We observed significant effects on AHL activity upon mutation or overexpression of BCAM1871, although these effects were more subtle than those observed for CepI indicating BCAM1871 acts as an enhancer of AHL activity. Transcription of cepI, cepR and cciIR was significantly reduced in the BCAM1871 mutant. Swimming and swarming motilities as well as transcription of fliC, encoding flagellin, were significantly reduced in the BCAM1871 mutant. Protease activity and transcription of zmpA and zmpB, encoding extracellular zinc metalloproteases, were undetectable in the BCAM1871 mutant indicating a more significant effect of mutating BCAM1871 than cepI. Exogenous addition of OHL restored cepI, cepR and fliC transcription but had no effect on motility, protease activity or zmpA or zmpB transcription suggesting AHL-independent effects. The BCAM1871 mutant exhibited significantly reduced virulence in rat chronic respiratory and nematode infection models. Gene expression and phenotypic assays as well as vertebrate and invertebrate infection models showed that BCAM1871 significantly contributes to pathogenesis in B. cenocepacia

    Genomic Islands as a Marker to Differentiate between Clinical and Environmental Burkholderia pseudomallei

    Get PDF
    Burkholderia pseudomallei, as a saprophytic bacterium that can cause a severe sepsis disease named melioidosis, has preserved several extra genes in its genome for survival. The sequenced genome of the organism showed high diversity contributed mainly from genomic islands (GIs). Comparative genome hybridization (CGH) of 3 clinical and 2 environmental isolates, using whole genome microarrays based on B. pseudomallei K96243 genes, revealed a difference in the presence of genomic islands between clinical and environmental isolates. The largest GI, GI8, of B. pseudomallei was observed as a 2 sub-GI named GIs8.1 and 8.2 with distinguishable %GC content and unequal presence in the genome. GIs8.1, 8.2 and 15 were found to be more common in clinical isolates. A new GI, GI16c, was detected on chromosome 2. Presences of GIs8.1, 8.2, 15 and 16c were evaluated in 70 environmental and 64 clinical isolates using PCR assays. A combination of GIs8.1 and 16c (positivity of either GI) was detected in 70% of clinical isolates and 11.4% of environmental isolates (P<0.001). Using BALB/c mice model, no significant difference of time to mortality was observed between K96243 isolate and three isolates without GIs under evaluation (P>0.05). Some virulence genes located in the absent GIs and the difference of GIs seems to contribute less to bacterial virulence. The PCR detection of 2 GIs could be used as a cost effective and rapid tool to detect potentially virulent isolates that were contaminated in soil

    Burkholderia cenocepacia ZmpB Is a Broad-Specificity Zinc Metalloprotease Involved in Virulence

    No full text
    In previous studies we characterized the Burkholderia cenocepacia ZmpA zinc metalloprotease. In this study, we determined that B. cenocepacia has an additional metalloprotease, which we designated ZmpB. The zmpB gene is present in the same species as zmpA and was detected in B. cepacia, B. cenocepacia, B. stabilis, B. ambifaria, and B. pyrrocinia but was absent from B. multivorans, B. vietnamiensis, B. dolosa, and B. anthina. The zmpB gene was expressed, and ZmpB was purified from Escherichia coli by using the pPROEXHTa His(6) Tag expression system. ZmpB has a predicted preproenzyme structure typical of thermolysin-like proteases and is distantly related to Bacillus cereus bacillolysin. ZmpB was expressed as a 63-kDa preproenzyme precursor that was autocatalytically cleaved into mature ZmpB (35 kDa) and a 27-kDa prepropeptide. EDTA, 1,10-phenanthroline, and Zn(2+) cations inhibited ZmpB enzyme activity, indicating that it is a metalloprotease. ZmpB had proteolytic activity against α-1 proteinase inhibitor, α(2)-macrogobulin, type IV collagen, fibronectin, lactoferrin, transferrin, and immunoglobulins. B. cenocepacia zmpB and zmpA zmpB mutants had no proteolytic activity against casein and were less virulent in a rat agar bead chronic infection model, indicating that zmpB is involved in B. cenocepacia virulence. Expression of zmpB was regulated by both the CepIR and CciIR quorum-sensing systems

    Identification of Genes Regulated by the cepIR Quorum-Sensing System in Burkholderia cenocepacia by High-Throughput Screening of a Random Promoter Library

    No full text
    The Burkholderia cenocepacia cepIR quorum-sensing system regulates expression of extracellular proteases, chitinase, and genes involved in ornibactin biosynthesis, biofilm formation, and motility. In a genome-wide screen we identified cepIR-regulated genes by screening a random promoter library of B. cenocepacia K56-2 constructed in a luminescence reporter detection plasmid for differential expression in response to N-octanoyl-l-homoserine lactone (OHL). Eighty-nine clones were identified; in 58 of these clones expression was positively regulated by cepIR, and in 31 expression was negatively regulated by cepIR. The expression profiles of the 89 promoter clones were compared in the cepI mutant K56-dI2 in medium supplemented with 30 pM OHL and K56-2 to confirm that the presence of OHL restored expression to wild-type levels. To validate the promoter library observations and to determine the effect of a cepR mutation on expression of selected genes, the mRNA levels of nine genes whose promoters were predicted to be regulated by cepR were quantitated by quantitative reverse transcription-PCR in the wild type and cepI and cepR mutants. The expression levels of all nine genes were similar in the cepI and cepR mutants and consistent with the promoter-lux reporter activity. The expression of four selected cepIR-regulated gene promoters was examined in a cciIR mutant, and two of these promoters were also regulated by cciIR. This study extends our understanding of genes whose expression is influenced by cepIR and indicates the global regulatory effect of the cepIR system in B. cenocepacia
    corecore