2,055 research outputs found
Half-time and high-speed running in the second half of soccer
This study investigated if the quantity of high-speed running (movements >15 km.h-1) completed in the first 15 minutes of competitive football matches differed from that completed in the corresponding 15 minutes of the second half. Twenty semi-professional soccer players (age 21.2 ± 3.6 years, body mass 76.4 ± 3.8 kg, height 1.89 ± 0.05 m) participated in the study. Fifty competitive soccer matches and 192 data files were analysed (4 ± 2 files per match) using Global Positioning Satellite technology. Data were analysed using 2-way repeated measures ANOVA and Pearson correlations. No differences were found between the first 15 min of each half for the distance completed at high-speed (>15 km.h-1) or sprinting (>21 km.h-1), or in the number of sprints undertaken (p>0.05). However, total distance covered was shorter (1st half vs. 2nd half: 1746 ± 220 vs. 1644 ± 224 m; p<0.001) and mean speed lower (1st half vs. 2nd half: 7.0 ± 0.9 vs. 6.6 ± 0.9 km.h-1; p<0.001) in the first 15 min of the second half compared to the first. The correlations between the duration of the half-time interval and the difference in the high-speed running or sprinting between first and second halves (0-15 min) were very small (r=0.08 [p=0.25] and r=0.04 [p=0.61] respectively). Therefore, this study did not find any difference between the amount of high-speed running and sprinting completed by semi-professional soccer players when the first 15 minutes of the first and second half of competitive matches were compared The maintenance of high-speed running and sprinting, as total distance and mean speed declined, may be a function of the pacing strategies adopted by players in competitive matches
Thin-Filament Pyrometry Developed for Measuring Temperatures in Flames
Many valuable advances in combustion science have come from observations of microgravity flames. This research is contributing to the improved efficiency and reduced emissions of practical combustors and is benefiting terrestrial and spacecraft fire safety. Unfortunately, difficulties associated with microgravity have prevented many types of measurements in microgravity flames. In particular, temperature measurements in flames are extremely important but have been limited in microgravity. A novel method of measuring temperatures in microgravity flames is being developed in-house at the National Center for Microgravity Research and the NASA Glenn Research Center and is described here. Called thin-filament pyrometry, it involves using a camera to determine the local gas temperature from the intensity of inserted fibers glowing in a flame. It is demonstrated here to provide accurate measurements of gas temperatures in a flame simultaneously at many locations. The experiment is shown. The flame is a laminar gas jet diffusion flame fueled by methane (CH4) flowing from a 14-mm round burner at a pressure of 1 atm. A coflowing stream of air is used to prevent flame flicker. Nine glowing fibers are visible. These fibers are made of silicon carbide (SiC) and have a diameter of 15 m (for comparison, the average human hair is 75 m in diameter). Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. The flame and glowing filaments were imaged with a digital black-and-white video camera. This camera has an imaging area of 1000 by 1000 pixels and a wide dynamic range of 12 bits. The resolution of the camera and optics was 0.1 mm. Optical filters were placed in front of the camera to limit incoming light to 750, 850, 950, and 1050 nm. Temperatures were measured in the same flame in the absence of fibers using 50-m Btype thermocouples. These thermocouples provide very accurate temperatures, but they generally are not useful in microgravity tests because they measure temperature at only one location at a time. Thermocouple measurements at a height of 11 mm above the burner were used to calibrate the thin-filament pyrometry system at all four wavelengths. This calibration was used to perform thin-filament pyrometry at other heights above the burner. One such profile is shown in this graph; this is for a height of 21 mm. The agreement between the pyrometry measurements and thermocouple results at this height is excellent in the range of 1000 to 2000 K, with an estimated uncertainty of 50 K and an estimated upper limit of 2500 K. Neither the thermocouple nor the thin-filament pyrometry temperatures have been corrected for radiation, but the correction is expected to be nearly the same for both methods. We anticipate that thin-filament pyrometry similar to that developed here will become an important diagnostic for studies of microgravity flames owing to its accuracy and its ability to simultaneously measure finely spaced temperatures
Smoke Point in Co-flow Experiment
The Smoke Point In Co-flow Experiment (SPICE) determines the point at which gas-jet flames (similar to a butane-lighter flame) begin to emit soot (dark carbonaceous particulate formed inside the flame) in microgravity. Studying a soot emitting flame is important in understanding the ability of fires to spread and in control of soot in practical combustion systems space. Previous experiments show that soot dominates the heat emitted from flames in normal gravity and microgravity fires. Control of this heat emission is critical for prevention of the spread of fires on Earth and in space for the design of efficient combustion systems (jet engines and power generation boilers). The onset of soot emission from small gas jet flames (similar to a butane-lighter flame) will be studied to provide a database that can be used to assess the interaction between fuel chemistry and flow conditions on soot formation. These results will be used to support combustion theories and to assess fire behavior in microgravity. The Smoke Point In Co-flow Experiment (SPICE) will lead to a o improved design of practical combustors through improved control of soot formation; o improved understanding of and ability to predict heat release, soot production and emission in microgravity fires; o improved flammability criteria for selection of materials for use in the next generation of spacecraft. The Smoke Point In Co-flow Experiment (SPICE) will continue the study of fundamental phenomena related to understanding the mechanisms controlling the stability and extinction of jet diffusion flames begun with the Laminar Soot Processes (LSP) on STS-94. SPICE will stabilize an enclosed laminar flame in a co-flowing oxidizer, measure the overall flame shape to validate the theoretical and numerical predictions, measure the flame stabilization heights, and measure the temperature field to verify flame structure predictions. SPICE will determine the laminar smoke point properties of non-buoyant jet diffusion flames (i.e., the properties of the largest laminar jet diffusion flames that do not emit soot) for several fuels under different nozzle diameter/co-flow velocity configurations. Luminous flame shape measurements would also be made to verify models of the flame shapes under co-flow conditions. The smoke point is a simple measurement that has been found useful to study the influence of flow and fuel properties on the sooting propensity of flames. This information would help support current understanding of soot processes in laminar flames and by analogy in turbulent flames of practical interest
A Data-Driven Design Evaluation Tool for Handheld Device Soft Keyboards
Thumb interaction is a primary technique used to operate small handheld devices such as smartphones. Despite the different techniques involved in operating a handheld device compared to a personal computer, the keyboard layouts for both devices are similar. A handheld device keyboard that considers the physical capabilities of the thumb may improve user experience. We developed and applied a design evaluation tool for different geometries of the QWERTY keyboard using a performance evaluation model. The model utilizes previously collected data on thumb motor performance and posture for different tap locations and thumb movement directions. We calculated a performance index (PITOT, 0 is worst and 2 is best) for 663 designs consisting in different combinations of three variables: the keyboard's radius of curvature (R) (mm), orientation (O) (°), and vertical location on the screen (L). The current standard keyboard performed poorly (PITOT = 0.28) compared to other designs considered. Keyboard location (L) contributed to the greatest variability in performance out of the three design variables, suggesting that designers should modify this variable first. Performance was greatest for designs in the middle keyboard location. In addition, having a slightly upward curve (R = −20 mm) and orientated perpendicular to the thumb's long axis (O = −20°) improved performance to PITOT = 1.97. Poorest performances were associated with placement of the keyboard's spacebar in the bottom right corner of the screen (e.g., the worst was for R = 20 mm, O = 40°, L = Bottom (PITOT = 0.09)). While this evaluation tool can be used in the design process as an ergonomic reference to promote user motor performance, other design variables such as visual access and usability still remain unexplored
Radiative Extinction of Gaseous Spherical Diffusion Flames in Microgravity
Radiative extinction of spherical diffusion flames was investigated experimentally and numerically. The experiments involved microgravity spherical diffusion flames burning ethylene and propane at 0.98 bar. Both normal (fuel flowing into oxidizer) and inverse (oxidizer flowing into fuel) flames were studied, with nitrogen supplied to either the fuel or the oxygen. Flame conditions were chosen to ensure that the flames extinguished within the 2.2 s of available test time; thus extinction occurred during unsteady flame conditions. Diagnostics included color video and thin-filament pyrometry. The computations, which simulated flow from a porous sphere into a quiescent environment, included detailed chemistry, transport and radiation, and yielded transient results. Radiative extinction was observed experimentally and simulated numerically. Extinction time, peak temperature, and radiative loss fraction were found to be independent of flow rate except at very low flow rates. Radiative heat loss was dominated by the combustion products downstream of the flame and was found to scale with flame surface area, not volume. For large transient flames the heat release rate also scaled with surface area and thus the radiative loss fraction was largely independent of flow rate. Peak temperatures at extinction onset were about 1100 K, which is significantly lower than for kinetic extinction. One observation of this work is that while radiative heat losses can drive transient extinction, this is not because radiative losses are increasing with time (flame size) but rather because the heat release rate is falling off as the temperature drops
A Computational Investigation of Sooting Limits of Spherical Diffusion Flames
Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01
Effects of Lewis Number on Temperatures of Spherical Diffusion Flames
Spherical diffusion flames supported on a porous sphere were studied numerically and experimentally. Experiments were performed in 2.2 s and 5.2 s microgravity facilities. Numerical results were obtained from a Chemkin-based program. The program simulates flow from a porous sphere into a quiescent environment, yields both steady-state and transient results, and accounts for optically thick gas-phase radiation. The low flow velocities and long residence times in these diffusion flames lead to enhanced radiative and diffusive effects. Despite similar adiabatic flame temperatures, the measured and predicted temperatures varied by as much as 700 K. The temperature reduction correlates with flame size but characteristic flow times and, importantly, Lewis number also influence temperature. The numerical results show that the ambient gas Lewis number would have a strong effect on flame temperature if the flames were steady and nonradiating. For example, a 10% decrease in Lewis number would increase the steady-state flame temperature by 200 K. However, for these transient, radiating flames the effect of Lewis number is small. Transient predictions of flame sizes are larger than those observed in microgravity experiments. Close agreement could not be obtained without either increasing the model s thermal and mass diffusion properties by 30% or reducing mass flow rate by 25%
Improving diets with wild and cultivated biodiversity from across the landscape
This paper examines the literature on how biodiversity contributes to improved and diversified diets in developing countries. We assess the current state of evidence on how wild and cultivated biodiversity in all forms is related to healthy diets and nutrition, and examine how economic factors, knowledge and social norms interact with availability of biodiversity to influence both production and consumption choices. The paper identifies areas where evidence is lacking and ways to build synergies between nutrition-sensitive approaches and efforts to ensure sustainability of food systems and the natural environment
Altitudinal gradients of tree species diversity and above-ground biomass on a small montane of Atlantic Central Africa
Tropical forests are both important carbon sinks and among the most biodiverse ecosystems on the earth. Patterns in aboveground biomass (AGB) and their relationship with species diversity of tropical forests over short altitudinal gradients are poorly known and the few previous studies on the subject have yielded variable results. Here, focusing on old-growth forests in Atlantic central Africa, we investigated how AGB varies with altitude, and how this variation is related to altitudinal changes in floristic composition and/or forest structure. We also investigate the relationship between AGB and species diversity along the altitudinal gradient. We inventoried all trees with a diameter (dbh) ≥ 10 cm in fifteen 1 ha permanent plots (100 m x 100 m) established along a transect from lowland (200 m) to submontane forests (900 m) in the Ngovayang Massif, southwestern Cameroon. Our data show a negative relationship between AGB and tree species richness, related to the elevation gradient. Forest AGB varied two-fold along this gradient, decreasing from 500-600 Mg ha-1 in lowland plots to less than 300 Mg ha-1 at the highest altitudes, while diversity increased, from 35.4 to 54.6 (Fisher's alpha index). The decreasing trend in AGB was mainly due to large trees (dbh ≥ 70 cm) whose contribution to AGB significantly decreased with altitude while the contribution from smaller trees was constant. Tree height and basal area also decreased significantly with increasing altitude, whereas stem density increased. While maximum potential tree height significantly decreased, wood specific gravity displayed no trend along the gradient. In particular, we showed that AGB variation was mainly determined by shift in species composition because large tree species were filtered out in the highest altitudes. Hence, our work further highlight the need for studying the drivers of large tree species distribution to better understand forest carbon stock variations in tropical forests. At the regional level, the Ngovayang massif was among the richest sites with highest level of biomass. Our results have strong implications in decisions on balancing carbon sequestration strategies with biodiversity conservation ones. Policy consequences are particularly relevant in forest management and land use planning.(Texte intégral
Effects of C/O Ratio and Temperature on Sooting Limits of Spherical Diffusion Flames
Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, residence time and scalar dissipation rate. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with scalar dissipation rate lower than 2/s were found to have temperatures near 1400 K where C/O = 0.51, whereas flames with greater scalar dissipation rate required increased temperatures. This finding was valid across a broad range of fuel and oxidizer compositions and convection directions
- …
