2,427 research outputs found

    Towards literature-based feature selection for diagnostic classification: A meta-analysis of resting-state fMRI in depression

    Get PDF
    Information derived from functional magnetic resonance imaging (fMRI) during wakeful rest has been introduced as a candidate diagnostic biomarker in unipolar major depressive disorder (MDD). Multiple reports of resting state fMRI in MDD describe group effects. Such prior knowledge can be adopted to pre-select potentially discriminating features for diagnostic classification models with the aim to improve diagnostic accuracy. Purpose of this analysis was to consolidate spatial information about alterations of spontaneous brain activity in MDD, primarily to serve as feature selection for multivariate pattern analysis techniques (MVPA). Thirty two studies were included in final analyses. Coordinates extracted from the original reports were assigned to two categories based on directionality of findings. Meta-analyses were calculated using the non-additive activation likelihood estimation approach with coordinates organized by subject group to account for non-independent samples. Converging evidence revealed a distributed pattern of brain regions with increased or decreased spontaneous activity in MDD. The most distinct finding was hyperactivity/hyperconnectivity presumably reflecting the interaction of cortical midline structures (posterior default mode network components including the precuneus and neighboring posterior cingulate cortices associated with self-referential processing and the subgenual anterior cingulate and neighboring medial frontal cortices) with lateral prefrontal areas related to externally-directed cognition. Other areas of hyperactivity/hyperconnectivity include the left lateral parietal cortex, right hippocampus and right cerebellum whereas hypoactivity/hypoconnectivity was observed mainly in the left temporal cortex, the insula, precuneus, superior frontal gyrus, lentiform nucleus and thalamus. Results are made available in two different data formats to be used as spatial hypotheses in future studies, particularly for diagnostic classification by MVPA

    Functional connectivity profile of the human inferior frontal junction: involvement in a cognitive control network

    Full text link
    Background: The human inferior frontal junction area (IFJ) is critically involved in three main component processes of cognitive control (working memory, task switching and inhibitory control). As it overlaps with several areas in established anatomical labeling schemes, it is considered to be underreported as a functionally distinct location in the neuroimaging literature. While recent studies explicitly focused on the IFJ´s anatomical organization and functional role as a single brain area, it is usually not explicitly denominated in studies on cognitive networks. However based on few analyses in small datasets constrained by specific a priori assumptions on its functional specialization, the IFJ has been postulated to be part of a cognitive control network. Goal of this meta-analysis was to establish the IFJ’s connectivity profile on a high formal level of evidence by aggregating published implicit knowledge about its co-activations. We applied meta-analytical connectivity modeling (MACM) based on the activation likelihood estimation (ALE) method without specific assumptions regarding functional specialization on 180 (reporting left IFJ activity) and 131 (right IFJ) published functional neuroimaging experiments derived from the BrainMap database. This method is based on coordinates in stereotaxic space, not on anatomical descriptors. Results: The IFJ is significantly co-activated with areas in the dorsolateral and ventrolateral prefrontal cortex, anterior insula, medial frontal gyrus / pre-SMA, posterior parietal cortex, occipitotemporal junction / cerebellum, thalamus and putamen as well as language and motor areas. Results are corroborated by an independent resting-state fMRI analysis. Conclusions: These results support the assumption that the IFJ is part of a previously described cognitive control network. They also highlight the involvement of subcortical structures in this system. A direct line is drawn from works on the functional significance of brain activity located at the IFJ and its anatomical definition to published results related to distributed cognitive brain systems. The IFJ is therefore introduced as a convenient starting point to investigate the cognitive control network in further studies

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Inclusive search for same-sign dilepton signatures in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    An inclusive search is presented for new physics in events with two isolated leptons (e or mu) having the same electric charge. The data are selected from events collected from p p collisions at root s = 7 TeV by the ATLAS detector and correspond to an integrated luminosity of 34 pb(-1). The spectra in dilepton invariant mass, missing transverse momentum and jet multiplicity are presented and compared to Standard Model predictions. In this event sample, no evidence is found for contributions beyond those of the Standard Model. Limits are set on the cross-section in a fiducial region for new sources of same-sign high-mass dilepton events in the ee, e mu and mu mu channels. Four models predicting same-sign dilepton signals are constrained: two descriptions of Majorana neutrinos, a cascade topology similar to supersymmetry or universal extra dimensions, and fourth generation d-type quarks. Assuming a new physics scale of 1 TeV, Majorana neutrinos produced by an effective operator V with masses below 460 GeV are excluded at 95% confidence level. A lower limit of 290 GeV is set at 95% confidence level on the mass of fourth generation d-type quarks

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +c¯¯)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−s¯¯¯ quark asymmetry

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for supersymmetry in final states containing at least one isolated lepton (electron or muon), jets and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. The search is based on proton-proton collision data at a centre-of-mass energy s√=8 TeV collected in 2012, corresponding to an integrated luminosity of 20 fb−1. No significant excess above the Standard Model expectation is observed. Limits are set on supersymmetric particle masses for various supersymmetric models. Depending on the model, the search excludes gluino masses up to 1.32 TeV and squark masses up to 840 GeV. Limits are also set on the parameters of a minimal universal extra dimension model, excluding a compactification radius of 1/R c = 950 GeV for a cut-off scale times radius (ΛR c) of approximately 30
    corecore