1,079 research outputs found

    Fermi-Bose Correspondence and Bose-Einstein Condensation in The Two-Dimensional Ideal Gas

    Full text link
    The ideal uniform two-dimensional (2D) Fermi and Bose gases are considered both in the thermodynamic limit and the finite case. We derive May's Theorem, viz. the correspondence between the internal energies of the Fermi and Bose gases in the thermodynamic limit. This results in both gases having the same heat capacity. However, as we shall show, the thermodynamic limit is never truly reached in two dimensions and so it is essential to consider finite-size effects. We show in an elementary manner that for the finite 2D Bose gas, a pseudo-Bose-Einstein condensate forms at low temperatures, incompatible with May's Theorem. The two gases now have different heat capacities, dependent on the system size and tending to the same expression in the thermodynamic limit.Comment: 18 pages, 3 figures in EPS format, to be published in Journal of Low Temperature Physic

    Environmental, developmental, and genetic factors controlling root system architecture

    Get PDF
    A better understanding of the development and architecture of roots is essential to develop strategies to increase crop yield and optimize agricultural land use. Roots control nutrient and water uptake, provide anchoring and mechanical support and can serve as important storage organs. Root growth and development is under tight genetic control and modulated by developmental cues including plant hormones and the environment. This review focuses on root architecture and its diversity and the role of environment, nutrient, and water as well as plant hormones and their interactions in shaping root architecture

    HI aperture synthesis and optical observations of the pair of galaxies NGC 6907 and 6908

    Full text link
    NGC 6908, a S0 galaxy situated in direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21 cm radio synthesis observations obtained with the GMRT and optical images and spectroscopy obtained with the Gemini North telescope of this pair of interacting galaxies. From the radio observations we obtained the velocity field and the HI column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high quality photometric images and 5A˚5 {\AA} resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s1^{-1}. The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some of them, superimposed on the absorption profiles, which reinforces the idea that they were not formed in NGC 6908. Finally, the HI profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disk and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4±0.6)×107(3.4 \pm 0.6)\times10^7 years ago.Comment: 11 pages, 5 tables, 13 figures. Corrected typos. Accepted for publication in MNRAS. The definitive version will be available at http://www.blackwell-synergy.co

    A High Galactic Latitude HI 21cm-line Absorption Survey using the GMRT: I. Observations and Spectra

    Get PDF
    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| >15deg.) Galactic latitudes. The Declination coverage of the present survey is Decl. ~ -45deg.. With a mean rms optical depth of ~0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.Comment: 46 pages, Accepted for publication in Journal of Astrophysics & Astronom

    GMRT Observations of the 2006 outburst of the Nova RS Ophiuchi: First detection of emission at radio frequencies < 1.4 GHz

    Full text link
    The first low radio frequency (<1.4 GHz) detection of the outburst of the recurrent nova RS Ophiuchi is presented in this letter. Radio emission was detected at 0.61 GHz on day 20 with a flux density of ~48 mJy and at 0.325 GHz on day 38 with a flux density of ~ 44 mJy. This is in contrast with the 1985 outburst when it was not detected at 0.327 GHz even on day 66. The emission at low radio frequencies is clearly non-thermal and is well-explained by a synchrotron spectrum of index alpha ~ -0.8 (S propto nu^alpha) suffering foreground absorption due to the pre-existing, ionized, warm, clumpy red giant wind. The absence of low frequency radio emission in 1985 and the earlier turn-on of the radio flux in the current outburst are interpreted as being due to higher foreground absorption in 1985 compared to that in 2006, suggesting that the overlying wind densities in 2006 are only ~30% of those in 1985.Comment: 14 pages, 1 figure. Accepted for publication in ApJ

    The Local Group dwarf Leo T: HI on the brink of star formation

    Get PDF
    We present Giant Meterwave Radio Telescope (GMRT) and Westerbork ynthesis Radio Telescope (WSRT) observations of the recently discovered Local Group dwarf galaxy, Leo T. The peak HI column density is measured to be 7x10^20 cm^-2, and the total HI mass is 2.8Xx10^5 Msun, based on a distance of 420 kpc. Leo T has both cold (~ 500 K) and warm (~ 6000 K) HI at its core, with a global velocity dispersion of 6.9 km/s, from which we derive a dynamical mass within the HI radius of 3.3x10^6 Msun, and a mass-to-light ratio of greater than 50. We calculate the Jeans mass from the radial profiles of the HI column density and velocity dispersion, and predict that the gas should be globally stable against star formation. This finding is inconsistent with the half light radius of Leo T, which extends to 170 pc, and indicates that local conditions must determine where star formation takes place. Leo T is not only the lowest luminosity galaxy with on-going star formation discovered to date, it is also the most dark matter dominated, gas-rich dwarf in the Local Group.Comment: 6 pages, 7 figures, accepted for publication in MNRAS on November 15th 2007, full resolution version at: http://www.ast.cam.ac.uk/~eryan/leot.pdf . Typographical error in sound speed equation has led to a new Figure 6 and minor changes to the tex

    A multiwavelength study of Galactic HII region Sh2-294

    Get PDF
    We present the observational results of Galactic HII region S294, using optical photometry, narrow-band imaging and radio continuum mapping at 1280 MHz, together with archival data from 2MASS, MSX and IRAS surveys. The stellar surface density profile indicates that the radius of the cluster associated with the S294 region is ~ 2.3 arcmin. We found an anomalous reddening law for the dust inside the cluster region and the ratio of total-to-selective extinction is found to be 3.8+-0.1. We estimate the minimum reddening E (B-V) = 1.35 mag and distance of 4.8+-0.2 kpc to the region from optical CC and CM diagrams. We identified the ionizing source of the HII region, and spectral type estimates are consistent with a star of spectral type ~ B0 V. The 2MASS JHKs images reveal a partially embedded cluster associated with the ionizing source along with a small cluster towards the eastern border of S294. The ionization front seen along the direction of small cluster in radio continuum and Halpha images, might be due to the interaction of ionizing sources with the nearby molecular cloud. We found an arc shaped diffuse molecular hydrogen emission at 2.12 micron and a half ring of MSX dust emission which surrounds the ionized gas in the direction of the ionization front. Self consistent radiative transfer model of mid- to far-infrared continuum emission detected near small cluster is in good agreement with the observed spectral energy distribution of a B1.5 ZAMS star. The morphological correlation between the ionised and molecular gas, along with probable time scale involved between the ionising star, evolution of HII region and small cluster, indicates that the star-formation activity observed at the border is probably triggered by the expansion of HII region.Comment: 50 pages, 21 figures: Accepted by The Astrophysical Journal; Also available at http://www.tifr.res.in/~ojha/S294.pd

    The Geometry of PSR B0031-07

    Get PDF
    PSR B0031-07 is well known to exhibit three different modes of drifting sub-pulses (mode A, B and C). It has recently been shown that in a multifrequency observation, consisting of 2700 pulses, all driftmodes were visible at low frequencies, while at 4.85 GHz only mode-A drift or non-drifting emission was detected. This suggests that modes A and B are emitted in sub-beams, rotating at a fixed distance from the magnetic axis, with the mode-B sub-beams being closer to the magnetic axis than the mode-A sub-beams. Diffuse emission between the sub-beams can account for the non-drifting emission. Using the results of an analysis of simultaneous multifrequency observations of PSR B0031-07, we set out to construct a geometrical model that includes emission from both sub-beams and diffuse emission and describes the regions of the radio emission of PSR B0031-07 at each emission frequency for driftmodes A and B. Based on the vertical spacing between driftbands, we have determined the driftmode of each sequence of drift. To restrict the model, we calculated average polarisation and intensity characteristics for each driftmode and at each frequency. The model reproduces the observed polarisation and intensity characteristics, suggesting that diffuse emission plays an important role in the emission properties of PSR B0031-07. The model further suggests that the emission heights of this pulsar range from a few kilometers to a little over 10 kilometers above the pulsar surface. We also find that the relationships between height and frequency of emission that follow from curvature radiation and from plasma-frequency emission could not be used to reproduce the observed frequency dependence of the width of the average intensity profiles.Comment: 15 pages, 9 figures, 8 tables, accepted for publication in A&
    corecore