20 research outputs found

    Marine Structures as Templates for Biomaterials

    No full text
    During the last two decades, “learning from nature” has given us new directions for the use of natural organic and inorganic skeletons, drug delivery devices, new medical treatment methods initiating unique designs and devices ranging from nano- to macroscale. These materials and designs have been instrumental to introduce the simplest remedies to vital problems in regenerative medicine, providing frameworks and highly accessible sources of osteopromotive analogues, scaffolds and drug delivery device proteins. This is exemplified by the biological effectiveness of marine structures such as corals and shells and sponge skeletons, extracts of spongin and nacre, sea urchin, sea snails and Foraminifera. Organic matrix and inorganic marine skeletons possess a habitat suitable for proliferating added mesenchymal stem cell populations and promoting clinically acceptable bone formation. A wide range of applications of these marine structures and their conversion methods are covered by excellent review papers and chapters. In this chapter based on our research, published work and book chapters, we aim to cover the nature, morphology and the use of some of these structures for tissue engineering, bone grafts, drug delivery and specific extracts such as proteins for regenerative medicine

    Asymmetric intramolecular α-cyclopropanation of aldehydes using a donor/acceptor carbene mimetic

    No full text
    Enantioselective alpha-alkylation of carbonyl is considered as one of the most important processes for asymmetric synthesis. Common alkylation agents, that is, alkyl halides, are notorious substrates for both Lewis acids and organocatalysts. Recently, olefins emerged as a benign alkylating species via photo/radical mechanisms. However, examples of enantioselective alkylation of aldehydes/ketones are scarce and direct asymmetric dialkylation remains elusive. Here we report an intramolecular alpha-cyclopropanation reaction of olefinic aldehydes to form chiral cyclopropane aldehydes. We demonstrate that an alpha-iodo aldehyde can function as a donor/acceptor carbene equivalent, which engages in a formal [2 + 1] annulation with a tethered double bond. Privileged bicyclo[3.1.0]hexane-type scaffolds are prepared in good optical purity using a chiral amine. The synthetic utility of the products is demonstrated by versatile transformations of the bridgehead formyl functionality. We expect the concept of using alpha-iodo iminium as a donor/acceptor carbene surrogate will find wide applications in chemical reaction development.National Natural Science Foundation of China [21372013, 21572004]; Shenzhen Peacock Program [KQTD201103]; Ministry of Education (MOE); Shenzhen municipal development and reform commissionSCI(E)[email protected]

    Sex pheromones and attractants in the Eucosmini and Grapholitini (Lepidoptera, Tortricidae)

    No full text
    The geometric isomers (E,E)-, (E,Z)-, (Z,E)-, and (Z,Z)-8,10-dodecadien-1- yl acetate were identified as sex pheromone components or sex attractants in the tribes Eucosmini and Grapholitini of the tortricid subfamily Olethreutinae. Species belonging to the more ancestral Tortricinae were not attracted. Each one isomer was behaviourally active in males of Cydia and Grapholita (Grapholitini), either as main pheromone compound, attraction synergist or attraction inhibitor. Their reciprocal attractive/antagonistic activity in a number of species enables specific communication with these four compounds. Pammene, as well as other Grapholita and Cydia responded to the monoenic 8- or 10-dodecen-1-yl acetates. Of the tribes Olethreutini and Eucosmini, Hedya, Epiblema, Eucosma, and Notocelia trimaculana were also attracted to 8,10-dodecadien-1-yl acetates, but several other Notocelia to 10,12-tetradecadien-1-yl acetates. The female sex pheromones of C. fagiglandana, C. pyrivora, C. splendana, Epiblema foenella and Notocelia roborana were identified. (E,E)- and (E,Z)-8,10-dodecadien-1-yl acetate are produced via a common E9 desaturation pathway in C. splendana. Calling C. nigricana and C. fagiglandana females are attracted to wingfanning males
    corecore