4,152 research outputs found
Quasi-decadal variability of Antarctic sea ice
第3回極域科学シンポジウム/第35回極域気水圏シンポジウム 11月29日(木) 国立国語研究所 2階多目的
Coefficient of restitution for elastic disks
We calculate the coefficient of restitution, , starting from a
microscopic model of elastic disks. The theory is shown to agree with the
approach of Hertz in the quasistatic limit, but predicts inelastic collisions
for finite relative velocities of two approaching disks. The velocity
dependence of is calculated numerically for a wide range of
velocities. The coefficient of restitution furthermore depends on the elastic
constants of the material via Poisson's number. The elastic vibrations absorb
kinetic energy more effectively for materials with low values of the shear
modulus.Comment: 25 pages, 12 Postscript figures, LaTex2
Phase Changes in an Inelastic Hard Disk System with a Heat Bath under Weak Gravity for Granular Fluidization
We performed numerical simulations on a two-dimensional inelastic hard disk
system under gravity with a heat bath to study the dynamics of granular
fluidization. Upon increasing the temperature of the heat bath, we found that
three phases, namely, the condensed phase, locally fluidized phase, and
granular turbulent phase, can be distinguished using the maximum packing
fraction and the excitation ratio, or the ratio of the kinetic energy to the
potential energy.It is shown that the system behavior in each phase is very
different from that of an ordinary vibrating bed.Comment: 4 pages, including 5 figure
Gac two-component system in Pseudomonas syringae pv. tabaci is required for virulence but not for hypersensitive reaction
Pseudomonas syringae pv. tabaci 6605 causes wildfire disease on host tobacco plants. To investigate the regulatory mechanism of the expression of virulence, Gac two-Component system-defective mutants, Delta gacA and Delta gacS, and a double mutant, Delta gacA Delta gacS, were generated. These mutants produced smaller amounts of N-acyl homoserine lactones required for quorum sensing, had lost swarming motility, and had reduced expression of virulence-related hrp genes and the algT gene required for exopolysaccharide production. The ability of the mutants to cause disease symptoms in their host tobacco plant was remarkably reduced, while they retained the ability to induce hypersensitive reaction (HR) in the nonhost plants. These results indicated that the Gac two-component system of P. syringae pv. tabaci 6605 is indispensable for virulence on the host plant, but not for HR induction in the nonhost plants.</p
Microcanonical Foundation for Systems with Power-Law Distributions
Starting from microcanonical basis with the principle of equal a priori
probability, it is found that, besides ordinary Boltzmann-Gibbs theory with the
exponential distribution, a theory describing systems with power-law
distributions can also be derived.Comment: 9 page
Directional dichroism in the paramagnetic state of multiferroics: a case study of infrared light absorption in Sr2CoSi2O7 at high temperatures
The coexisting magnetic and ferroelectric orders in multiferroic materials
give rise to a handful of novel magnetoelectric phenomena, such as the
absorption difference for the opposite propagation directions of light called
the non-reciprocal directional dichroism (NDD). Usually these effects are
restricted to low temperature, where the multiferroic phase develops. In this
paper we report the observation of NDD in the paramagnetic phase of Sr2CoSi2O7
up to temperatures more than ten times higher than its N\'eel temperature (7 K)
and in fields up to 30 T. The magnetically induced polarization and NDD in the
disordered paramagnetic phase is readily explained by the single-ion
spin-dependent hybridization mechanism, which does not necessitate correlation
effects between magnetic ions. The Sr2CoSi2O7 provides an ideal system for a
theoretical case study, demonstrating the concept of magnetoelectric spin
excitations in a paramagnet via analytical as well as numerical approaches. We
applied exact diagonalization of a spin cluster to map out the temperature and
field dependence of the spin excitations, as well as symmetry arguments of the
single ion and lattice problem to get the spectrum and selection rules.Comment: 15 pages, 7 figure
Angle of Repose and Angle of Marginal Stability: Molecular Dyanmics of Granular Particles
We present an implementation of realistic static friction in molecular
dynamics (MD) simulations of granular particles. In our model, to break
contacts between two particles, one has to apply a finite amount of force,
determined by the Coulomb criterion. Using a two dimensional model, we show
that piles generated by avalanches have a {\it finite} angle of repose
(finite slopes). Furthermore, these piles are stable under tilting
by an angle smaller than a non-zero tilting angle , showing that
is different from the angle of marginal stability ,
which is the maximum angle of stable piles. These measured angles are compared
to a theoretical approximation. We also measure by continuously
adding particles on the top of a stable pile.Comment: 14 pages, Plain Te
Electronic and magnetic excitations in the "half-stuffed" Cu--O planes of BaCuOCl measured by resonant inelastic x-ray scattering
We use resonant inelastic x-ray scattering (RIXS) at the Cu L edge to
measure the charge and spin excitations in the "half-stuffed" Cu--O planes of
the cuprate antiferromagnet BaCuOCl. The RIXS line shape
reveals distinct contributions to the excitations from the two
structurally inequivalent Cu sites, which have different out-of-plane
coordinations. The low-energy response exhibits magnetic excitations. We find a
spin-wave branch whose dispersion follows the symmetry of a CuO sublattice,
similar to the case of the "fully-stuffed" planes of tetragonal CuO (T-CuO).
Its bandwidth is closer to that of a typical cuprate material, such as
SrCuOCl, than it is to that of T-CuO. We interpret this result as
arising from the absence of the effective four-spin inter-sublattice
interactions that act to reduce the bandwidth in T-CuO.Comment: 10 pages, 8 figure
Steady state properties of a driven granular medium
We study a two-dimensional granular system where external driving force is
applied to each particle in the system in such a way that the system is driven
into a steady state by balancing the energy input and the dissipation due to
inelastic collision between particles. The velocities of the particles in the
steady state satisfy the Maxwellian distribution. We measure the
density-density correlation and the velocity-velocity correlation functions in
the steady state and find that they are of power-law scaling forms. The
locations of collision events are observed to be time-correlated and such a
correlation is described by another power-law form. We also find that the
dissipated energy obeys a power-law distribution. These results indicate that
the system evolves into a critical state where there are neither characteristic
spatial nor temporal scales in the correlation functions. A test particle
exhibits an anomalous diffusion which is apparently similar to the Richardson
law in a three-dimensional turbulent flow.Comment: REVTEX, submitted to Phys. Rev.
Fracture driven by a Thermal Gradient
Motivated by recent experiments by Yuse and Sano (Nature, 362, 329 (1993)),
we propose a discrete model of linear springs for studying fracture in thin and
elastically isotropic brittle films. The method enables us to draw a map of the
stresses in the material. Cracks generated by the model, imposing a moving
thermal gradient in the material, can branch or wiggle depending on the driving
parameters. The results may be used to compare with other recent theoretical
work, or to design future experiments.Comment: RevTeX file (9 pages) and 5 postscript figure
- …
