1,312 research outputs found

    Isospin fluctuations in spinodal decomposition

    Full text link
    We study the isospin dynamics in fragment formation within the framework of an analytical model based on the spinodal decomposition scenario. We calculate the probability to obtain fragments with given charge and neutron number, focussing on the derivation of the width of the isotopic distributions. Within our approach this is determined by the dispersion of N/Z among the leading unstable modes, due to the competition between Coulomb and symmetry energy effects, and by isovector-like fluctuations present in the matter that undergoes the spinodal decomposition. Hence the widths exhibit a clear dependence on the properties of the Equation of State. By comparing two systems with different values of the charge asymmetry we find that the isotopic distributions reproduce an isoscaling relationship.Comment: 18 RevTex4 pages, 6 eps figure

    Bimodality as a signal of Liquid-Gas phase transition in nuclei?

    Full text link
    We use the HIPSE (Heavy-Ion Phase-Space Exploration) Model to discuss the origin of the bimodality in charge asymmetry observed in nuclear reactions around the Fermi energy. We show that it may be related to the important angular momentum (spin) transferred into the quasi-projectile before secondary decay. As the spin overcomes the critical value, a sudden opening of decay channels is induced and leads to a bimodal distribution for the charge asymmetry. In the model, it is not assigned to a liquid-gas phase transition but to specific instabilities in nuclei with high spin. Therefore, we propose to use these reactions to study instabilities in rotating nuclear droplets.Comment: 4 pages, 4 figures Accepted to PR

    Mesure de l'énergie des ions lourds par la méthode des protons projetés

    No full text
    Un dispositif destiné à la mesure de l'énergie des faisceaux d'ions lourds de 3 à 6 MeV/ uma a été construit. Le principe de la méthode est de mesurer l'énergie des protons projetés à zéro degré par collision élastique des ions incidents avec les noyaux d'hydrogène d'une cible de formvar. L'incertitude calculée sur l'énergie ainsi mesurée pour les ions lourds est de + 0,45 %. Des mesures faites sur des faisceaux de 19F et 40Ca d'énergie bien connue, accélérés par un Tandem MP, ont montré un écart maximum de 0,3 % entre les énergies réelles et mesurées. Le dispositif permet de contrôler ou calibrer des méthodes plus lourdes de détermination de l'énergie des ions lourds : déviation magnétique, temps de vol. Il se prête particulièrement bien à la mesure des pertes d'énergie d'ions lourds dans des ralentisseurs solides

    Mid-rapidity charge distribution in peripheral heavy ion collisions

    Get PDF
    The charge density distribution with respect to the velocity of matter produced in peripheral heavy ion reactions around Fermi energy is investigated. The experimental finding of enhancement of mid-rapidity matter shows the necessity to include correlations beyond BUU which was performed in the framework of nonlocal kinetic theory. Different theoretical improvements are discussed. While the in-medium cross section changes the number of collisions, it leads the transferred energy almost unchanged. In contrast the nonlocal scenario changes the energy transferred during collisions and leads to an enhancement of mid-rapidity matter. The renormalisation of quasiparticle energies is shown to be possible to include in nonlocal scenarios and and leads to a further enhancement of mid-rapidity matter distribution. This renormalisation is accompanied by a dynamical softening of the equation of state seen in longer oscillation periods of the excited compressional collective mode. We propose to include quasiparticle renormalization by using the Pauli-rejected collisions which circumvent the problem of backflows in Landau theory. Using the maximum relative velocity of projectile and target like fragments we associate experimental events with impact parameters of the simulations. For peripheral collisions we find a reasonable agreement between experiment and theory. For more central collisions the velocity damping is higher in one - body simulations than observed experimentally which is due to missing cluster formations in the used kinetic theory

    Isospin diffusion in semi-peripheral 58Ni^{58}Ni + 197Au^{197}Au collisions at intermediate energies (I): Experimental results

    Get PDF
    Isospin diffusion in semi-peripheral collisions is probed as a function of the dissipated energy by studying two systems 58Ni^{58}Ni + 58Ni^{58}Ni and 58Ni^{58}Ni + 197Au^{197}Au, over the incident energy range 52-74\AM. A close examination of the multiplicities of light products in the forward part of phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time

    Pion radii in nonlocal chiral quark model

    Full text link
    The electromagnetic radius of the charged pion and the transition radius of the neutral pion are calculated in the framework of the nonlocal chiral quark model. It is shown in this model that the contributions of vector mesons to the pion radii are noticeably suppressed in comparison with a similar contribution in the local Nambu--Jona-Lasinio model. The form-factor for the process gamma*pi+pi- is calculated for the -1 GeV^2<q^2<1.6 GeV^2. Our results are in satisfactory agreement with experimental data.Comment: 7 pages, 7 figure

    Estimate of average freeze-out volume in multifragmentation events

    Get PDF
    An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.Comment: To be published in Phys. Lett. B 12 pages, 5 figure

    Multifragmentation process for different mass asymmetry in the entrance channel around the Fermi energy

    Full text link
    The influence of the entrance channel asymmetry upon the fragmentation process is addressed by studying heavy-ion induced reactions around the Fermi energy. The data have been recorded with the INDRA 4pi array. An event selection method called the Principal Component Analysis is presented and discussed. It is applied for the selection of central events and furthermore to multifragmentation of single source events. The selected subsets of data are compared to the Statistical Multifragmentation Model (SMM) to check the equilibrium hypothesis and get the source characteristics. Experimental comparisons show the evidence of a decoupling between thermal and compresional (radial flow) degrees of freedom in such nuclear systems.Comment: 28 pages, 15 figures, article sumitted to Nuclear Physics
    corecore