3,865 research outputs found

    Study of systematics effects on the Cross Power Spectrum of 21 cm Line and Cosmic Microwave Background using Murchison Widefield Array Data

    Get PDF
    Observation of the 21cm line signal from neutral hydrogen during the Epoch of Reionization is challenging due to extremely bright Galactic and extragalactic foregrounds and complicated instrumental calibration. A reasonable approach for mitigating these problems is the cross correlation with other observables. In this work, we present the first results of the cross power spectrum (CPS) between radio images observed by the Murchison Widefield Array and the cosmic microwave background (CMB), measured by the Planck experiment. We study the systematics due to the ionospheric activity, the dependence of CPS on group of pointings, and frequency. The resulting CPS is consistent with zero because the error is dominated by the foregrounds in the 21cm observation. Additionally, the variance of the signal indicates the presence of unexpected systematics error at small scales. Furthermore, we reduce the error by one order of magnitude with application of a foreground removal using a polynomial fitting method. Based on the results, we find that the detection of the 21cm-CMB CPS with the MWA Phase I requires more than 99.95% of the foreground signal removed, 2000 hours of deep observation and 50% of the sky fraction coverage.Comment: 15 pages, 16 figures, accepted to MNRA

    Cosmological constraints from CMB distortion

    Full text link
    We examine bounds on adiabatic and isocurvature density fluctuations from μ\mu-type spectral distortions of the cosmic microwave background (CMB). Studies of such distortion are complementary to CMB measurements of the spectral index and its running, and will help to constrain these parameters on significantly smaller scales. We show that a detection on the order of μ107\mu \sim 10^{-7} would strongly be at odds with the standard cosmological model of a nearly scale-invariant spectrum of adiabatic perturbations. Further, we find that given the current CMB constraints on the isocurvature mode amplitude, a nearly scale-invariant isocurvature mode (common in many curvaton models) cannot produce significant μ\mu-distortion. Finally, we show that future experiments will strongly constrain the amplitude of the isocurvature modes with a highly blue spectrum as predicted by certain axion models.Comment: 6 pages, 4 figures, version 3 contains a new figure showing the contribution to \mu_k as a function of k, and a clarification regarding the acoustic wave energy, accompanied by a related acknowledgement and referenc

    On the Thermal Instability in a Contracting Gas Cloud and Formation of a Bound Cluster

    Get PDF
    We perform linear analysis of thermal instability in a contracting large cloud filled with warm HI gas and investigate the effect of metallicity and radiation flux. When the cloud reaches critical density n_f, the cloud fragments into cool, dense condensations because of thermal instability. For a lower metallicity gas cloud, the value of n_f is high. Collision between condensations will produce self-gravitating clumps and stars thereafter. From the result of calculation, we suggest that high star formation efficiency and bound cluster formation are realized in low-metallicity and/or strong-radiation environments.Comment: 7 pages, including 7 figures, LaTeX2e(emulateapj5.sty) To appear in ApJ, Jun 10, 200

    The unusual thickness dependence of superconductivity in α\alpha-MoGe thin films

    Full text link
    Thin films of α\alpha-MoGe show progressively reduced TcT_{c}'s as the thickness is decreased below 30 nm and the sheet resistance exceeds 100 Ω/\Omega/\Box. We have performed far-infrared transmission and reflection measurements for a set of α\alpha-MoGe films to characterize this weakened superconducting state. Our results show the presence of an energy gap with ratio 2Δ0/kBTc=3.8±0.12\Delta_0/k_BT_{c} = 3.8 \pm 0.1 in all films studied, slightly higher than the BCS value, even though the transition temperatures decrease significantly as film thickness is reduced. The material properties follow BCS-Eliashberg theory with a large residual scattering rate except that the coherence peak seen in the optical scattering rate is found to be strongly smeared out in the thinner superconducting samples. A peak in the optical mass renormalization at 2Δ02\Delta_0 is predicted and observed for the first time

    Nonlinear Evolution of Cosmic Magnetic Fields and Cosmic Microwave Background Anisotropies

    Get PDF
    In this work we investigate the effects of the primordial magnetic fields on cosmic microwave background anisotropies (CMB). Based on cosmological magnetohydrodynamic (MHD) simulations we calculate the CMB anisotropy spectra and polarization induced by fluid fluctuations (Alfv\'en modes) generated by primordial magnetic fields. The strongest effect on the CMB spectra comes from the transition epoch from a turbulent regime to a viscous regime. The balance between magnetic and kinetic energy until the onset of the viscous regime provides a one to one relation between the comoving coherence length LL and the comoving magnetic field strength BB, such as L30(B/109G)3pcL \sim 30 (B/10^{-9}{\rm G})^3 \rm pc. The resulting CMB temperature and polarization anisotropies are somewhat different from the ones previously obtained by using linear perturbation theory. Our calculation gives a constraint on the magnetic field strength in the intermediate scale of CMB observations. Upper limits are set by WMAP and BOOMERANG results for comoving magnetic field strength of B<28nGB < 28 \rm nG with a comoving coherence length of L>0.7MpcL > 0.7 \rm Mpc for the most extreme case, or B0.8MpcB 0.8 \rm Mpc for the most conservative case.Comment: accepted for publication in Phys. Rev.

    Uniqueness of static decompositions

    Full text link
    We classify static manifolds which admit more than one static decomposition whenever a condition on the curvature is fullfilled. For this, we take a standard static vector field and analyze its associated one parameter family of projections onto the base. We show that the base itself is a static manifold and the warping function satisfies severe restrictions, leading us to our classification results. Moreover, we show that certain condition on the lightlike sectional curvature ensures the uniqueness of static decomposition for Lorentzian manifolds.Comment: 14 page

    Molecular double core-hole electron spectroscopy for chemical analysis

    Full text link
    We explore the potential of double core hole electron spectroscopy for chemical analysis in terms of x-ray two-photon photoelectron spectroscopy (XTPPS). The creation of deep single and double core vacancies induces significant reorganization of valence electrons. The corresponding relaxation energies and the interatomic relaxation energies are evaluated by CASSCF calculations. We propose a method how to experimentally extract these quantities by the measurement of single and double core-hole ionization potentials (IPs and DIPs). The influence of the chemical environment on these DIPs is also discussed for states with two holes at the same atomic site and states with two holes at two different atomic sites. Electron density difference between the ground and double core-hole states clearly shows the relaxations accompanying the double core-hole ionization. The effect is also compared with the sensitivity of single core hole ionization potentials (IPs) arising in single core hole electron spectroscopy. We have demonstrated the method for a representative set of small molecules LiF, BeO, BF, CO, N2, C2H2, C2H4, C2H6, CO2 and N2O. The scalar relativistic effect on IPs and on DIPs are briefly addressed.Comment: 35 pages, 6 figures. To appear in J. Chem. Phys
    corecore