346 research outputs found
Monte Carlo studies of a novel X-ray tube anode design
When energetic electrons are incident on high atomic number absorbers, a substantial fraction is back-scattered. This phenomenon is responsible for several undesirable effects in X-ray tubes, in particular a reduction in the X-ray output. The extent of this shortfall has been estimated by using Monte Carlo simulation to start electrons at increasing depth inside the anode, the results indicating that an output enhancement of nearly 50% could be achieved in principle if the electrons wasted in back-scatter events could be trapped inside a tungsten anode. To test this idea a further set of simulations were done for a novel anode geometry. Results showed that X-ray tube efficiencies might be substantially enhanced by this approach.http://www.sciencedirect.com/science/article/B6TVT-43P41Y7-30/1/526566f6ea15332c302cdad2886e583
Equilibrium-Based Force and Torque Control for an Aerial Manipulator to Interact with a Vertical Surface
In this paper, a force and torque controller for aerial manipulation is developed using an unmanned aerial vehicle equipped with a robotic arm to interact near or on a vertical surface such as a wall. Control of aerial manipulators interacting with the environment is a challenging task due to dynamic interactions between aerial vehicles, robotic arms, and environment. To achieve this, modeling of aerial manipulators is first investigated and presented considering interaction with the environment. Nonlinear models of generic aerial manipulators, as well as of a prototype aerial manipulator composed of a hexacopter with a three-joint robotic arm, are established. An equilibrium-based force and torque controller is developed to conduct tasks that require the aerial manipulator to exert forces and torques on a wall. Simulations and experiments validate the performance of the controller that successfully applies desired forces and torques to an object fixed on a wall while flying near the wall
Measurements of high-energy neutron-induced fission of (nat)Pb and (209)Bi
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe CERN Neutron Time-Of-Flight (n_TOF) facility is well suited to measure low cross sections as those of neutron-induced fission in subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors and a fragment coincidence method that allows us to identify the fission events. The present experiment provides first results for neutron-induced fission up to 1 GeV. Good agreement is found with previous experimental data below 200 MeV. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross sections is close to 1 GeV
The (234)U neutron capture cross section measurement at the n_TOF facility
The neutron capture cross-section of (234)U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n_TOF, based on a spallation source located at CERN. A 4 pi BaF(2) array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt gamma-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of ENDF in the relevant energy region, indicating the good performance of the n_TOF facility and the TAC
Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF
The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards
Measurement of the (90,91,92,93,94,96)Zr(n,gamma) and (139)La(n,gamma) cross sections at n_TOF
Open AccessNeutron capture cross sections of Zr and La isotopes have important implications in the field of nuclear astrophysics as well as in the nuclear technology. In particular the Zr isotopes play a key role for the determination of the neutron density in the He burning zone of the Red Giant star, while the (139)La is important to monitor the s-process abundances from Ba up to Ph. Zr is also largely used as structural materials of traditional and advanced nuclear reactors. The nuclear resonance parameters and the cross section of (90,91,92,93,94,96)Zr and (139)La have been measured at the n_TOF facility at CERN. Based on these data the capture resonance strength and the Maxwellian-averaged cross section were calculated
New measurement of neutron capture resonances of 209Bi
The neutron capture cross section of Bi209 has been measured at the CERN n
TOF facility by employing the pulse-height-weighting technique. Improvements
over previous measurements are mainly because of an optimized detection system,
which led to a practically negligible neutron sensitivity. Additional
experimental sources of systematic error, such as the electronic threshold in
the detectors, summing of gamma-rays, internal electron conversion, and the
isomeric state in bismuth, have been taken into account. Gamma-ray absorption
effects inside the sample have been corrected by employing a nonpolynomial
weighting function. Because Bi209 is the last stable isotope in the reaction
path of the stellar s-process, the Maxwellian averaged capture cross section is
important for the recycling of the reaction flow by alpha-decays. In the
relevant stellar range of thermal energies between kT=5 and 8 keV our new
capture rate is about 16% higher than the presently accepted value used for
nucleosynthesis calculations. At this low temperature an important part of the
heavy Pb-Bi isotopes are supposed to be synthesized by the s-process in the He
shells of low mass, thermally pulsing asymptotic giant branch stars. With the
improved set of cross sections we obtain an s-process fraction of 19(3)% of the
solar bismuth abundance, resulting in an r-process residual of 81(3)%. The
present (n,gamma) cross-section measurement is also of relevance for the design
of accelerator driven systems based on a liquid metal Pb/Bi spallation target.Comment: 10 pages, 5figures, recently published in Phys. Rev.
Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV
The neutron capture cross section of 204Pb has been measured at the CERN
n_TOF installation with high resolution in the energy range from 1 eV to 440
keV. An R-matrix analysis of the resolved resonance region, between 1 eV and
100 keV, was carried out using the SAMMY code. In the interval between 100 keV
and 440 keV we report the average capture cross section. The background in the
entire neutron energy range could be reliably determined from the measurement
of a 208Pb sample. Other systematic effects in this measurement could be
investigated and precisely corrected by means of detailed Monte Carlo
simulations. We obtain a Maxwellian average capture cross section for 204Pb at
kT=30 keV of 79(3) mb, in agreement with previous experiments. However our
cross section at kT=5 keV is about 35% larger than the values reported so far.
The implications of the new cross section for the s-process abundance
contributions in the Pb/Bi region are discussed.Comment: 8 pages, 3 figures, article submitted to Phys. Rev.
Measurement of the radiative neutron capture cross section of 206Pb and its astrophysical implications
The (n, gamma) cross section of 206Pb has been measured at the CERN n_TOF
facility with high resolution in the energy range from 1 eV to 600 keV by using
two optimized C6D6 detectors. In the investigated energy interval about 130
resonances could be observed, from which 61 had enough statistics to be
reliably analyzed via the R-matrix analysis code SAMMY. Experimental
uncertainties were minimized, in particular with respect to (i) angular
distribution effects of the prompt capture gamma-rays, and to (ii) the
TOF-dependent background due to sample-scattered neutrons. Other background
components were addressed by background measurements with an enriched 208Pb
sample. The effect of the lower energy cutoff in the pulse height spectra of
the C6D6 detectors was carefully corrected via Monte Carlo simulations.
Compared to previous 206Pb values, the Maxwellian averaged capture cross
sections derived from these data are about 20% and 9% lower at thermal energies
of 5 keV and 30 keV, respectively. These new results have a direct impact on
the s-process abundance of 206Pb, which represents an important test for the
interpretation of the cosmic clock based on the decay of 238U.Comment: 11 pages, 8 figures, paper to be submitted to Phys. Rev.
- …
