15,517 research outputs found

    Metabolism of ticagrelor in patients with acute coronary syndromes.

    Get PDF
    © The Author(s) 2018Ticagrelor is a state-of-the-art antiplatelet agent used for the treatment of patients with acute coronary syndromes (ACS). Unlike remaining oral P2Y12 receptor inhibitors ticagrelor does not require metabolic activation to exert its antiplatelet action. Still, ticagrelor is extensively metabolized by hepatic CYP3A enzymes, and AR-C124910XX is its only active metabolite. A post hoc analysis of patient-level (n = 117) pharmacokinetic data pooled from two prospective studies was performed to identify clinical characteristics affecting the degree of AR-C124910XX formation during the first six hours after 180 mg ticagrelor loading dose in the setting of ACS. Both linear and multiple regression analyses indicated that ACS patients presenting with ST-elevation myocardial infarction or suffering from diabetes mellitus are more likely to have decreased rate of ticagrelor metabolism during the acute phase of ACS. Administration of morphine during ACS was found to negatively influence transformation of ticagrelor into AR-C124910XX when assessed with linear regression analysis, but not with multiple regression analysis. On the other hand, smoking appears to increase the degree of ticagrelor transformation in ACS patients. Mechanisms underlying our findings and their clinical significance warrant further research.Peer reviewedFinal Published versio

    Aceso

    Full text link

    N=2 and N=4 SUSY Yang-Mills action on M4^{4} x (Z2_{2} + Z2_{2}) non-commutative geometry

    Get PDF
    We show that the N=2 and N=4 SUSY Yang-Mills action can be reformulated in the sense of non-commutative geometry on M^4\times (Z_2\oplus Z_2) in a rather simple way. In this way the scalars or pseudoscalars are viewed as gauge fields along two directions in the space of one-forms on Z_2\oplus Z_2

    Pseudomagnetic Fields in a Locally Strained Graphene Drumhead

    Full text link
    Recent experiments reveal that a scanning tunneling microscopy (STM) probe tip can generate a highly localized strain field in a graphene drumhead, which in turn leads to pseudomagnetic fields in the graphene that can spatially confine graphene charge carriers in a way similar to a lithographically defined quantum dot (QD). While these experimental findings are intriguing, their further implementation in nanoelectronic devices hinges upon the knowledge of key underpinning parameters, which still remain elusive. In this paper, we first summarize the experimental measurements of the deformation of graphene membranes due to interactions with the STM probe tip and a back gate electrode. We then carry out systematic coarse grained, (CG), simulations to offer a mechanistic interpretation of STM tip-induced straining of the graphene drumhead. Our findings reveal the effect of (i) the position of the STM probe tip relative to the graphene drumhead center, (ii) the sizes of both the STM probe tip and graphene drumhead, as well as (iii) the applied back-gate voltage, on the induced strain field and corresponding pseudomagnetic field. These results can offer quantitative guidance for future design and implementation of reversible and on-demand formation of graphene QDs in nanoelectronics.Comment: 21 pages, 9 figure

    Inequalities Detecting Quantum Entanglement for 2d2\otimes d Systems

    Full text link
    We present a set of inequalities for detecting quantum entanglement of 2d2\otimes d quantum states. For 222\otimes 2 and 232\otimes 3 systems, the inequalities give rise to sufficient and necessary separability conditions for both pure and mixed states. For the case of d>3d>3, these inequalities are necessary conditions for separability, which detect all entangled states that are not positive under partial transposition and even some entangled states with positive partial transposition. These inequalities are given by mean values of local observables and present an experimental way of detecting the quantum entanglement of 2d2\otimes d quantum states and even multi-qubit pure states.Comment: 6 page

    A Chandra X-Ray Survey of Ultraluminous Infrared Galaxies

    Full text link
    We present results from Chandra observations of 14 ultraluminous infrared galaxies (ULIRGs; log(L_IR/L_Sun) >= 12) with redshifts between 0.04 and 0.16. The goals of the observations were to investigate any correlation between infrared color or luminosity and the properties of the X-ray emission and to attempt to determine whether these objects are powered by starbursts or active galactic nuclei (AGNs). The sample contains approximately the same number of high and low luminosity objects and ``warm'' and ``cool'' ULIRGs. All 14 galaxies were detected by Chandra. Our analysis shows that the X-ray emission of the two Seyfert 1 galaxies in our sample are dominated by AGN. The remaining 12 sources are too faint for conventional spectral fitting to be applicable. Hardness ratios were used to estimate the spectral properties of these faint sources. The photon indices for our sample plus the Chandra-observed sample from Ptak et al.(2003) peak in the range of 1.0-1.5, consistent with expectations for X-ray binaries in a starburst, an absorbed AGN, or hot bremsstrahlung from a starburst or AGN. The values of photon index for the objects in our sample classified as Seyferts (type 1 or 2) are larger than 2, while those classified as HII regions or LINERs tend to be less than 2. The hard X-ray to far-infrared ratios for the 12 weak sources are similar to those of starbursts, but we cannot rule out the possibility of absorbed, possibly Compton-thick, AGNs in some of these objects. Two of these faint sources were found to have X-ray counterparts to their double optical and infrared nuclei.Comment: 40 pages, 5 tables, 14 figures, accepted by Ap
    corecore