809 research outputs found

    Role of Endogenous GLP-1 and GIP in Beta Cell Compensatory Responses to Insulin Resistance and Cellular Stress.

    Get PDF
    Role of GLP-1 and GIP in beta cell compensatory responses to beta cell attack and insulin resistance were examined in C57BL/6 mice lacking functional receptors for GLP-1 and GIP. Mice were treated with multiple low dose streptozotocin or hydrocortisone. Islet parameters were assessed by immunohistochemistry and hormone measurements were determined by specific enzyme linked immunoassays. Wild-type streptozotocin controls exhibited severe diabetes, irregularly shaped islets with lymphocytic infiltration, decreased Ki67/TUNEL ratio with decreased beta cell and increased alpha cell areas. GLP-1 and GIP were co-expressed with glucagon and numbers of alpha cells mainly expressing GLP-1 were increased. In contrast, hydrocortisone treatment and induction of insulin resistance increased islet numbers and area, with enhanced beta cell replication, elevated mass of beta and alpha cells, together with co-expression of GLP-1 and GIP with glucagon in islets. The metabolic responses to streptozotocin in GLP-1RKO and GIPRKO mice were broadly similar to C57BL/6 controls, although decreases in islet numbers and size were more severe. In contrast, both groups of mice lacking functional incretin receptors displayed substantially impaired islet adaptations to insulin resistance induced by hydrocortisone, including marked curtailment of expansion of islet area, beta cell mass and islet number. Our observations cannot be explained by simple changes in circulating incretin concentrations, suggesting that intra-islet GLP-1 and GIP make a significant contribution to islet adaptation, particularly expansion of beta cell mass and compensatory islet compensation to hydrocortisone and insulin resistance

    Ins1 (Cre) knock-in mice for beta cell-specific gene recombination.

    Get PDF
    AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells

    The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing.

    Get PDF
    Intestinal glucose absorption is mediated by SGLT1 whereas GLUT2 is considered to provide basolateral exit. Recently, it was proposed that GLUT2 can be recruited into the apical membrane after a high luminal glucose bolus allowing bulk absorption of glucose by facilitated diffusion. Moreover, SGLT1 and GLUT2 are suggested to play an important role in intestinal glucose sensing and incretin secretion. In mice that lack either SGLT1 or GLUT2 we re-assessed the role of these transporters in intestinal glucose uptake after radiotracer glucose gavage and performed Western blot analysis for transporter abundance in apical membrane fractions in a comparative approach. Moreover, we examined the contribution of these transporters to glucose-induced changes in plasma GIP, GLP-1 and insulin levels. In mice lacking SGLT1, tissue retention of tracer glucose was drastically reduced throughout the entire small intestine whereas GLUT2-deficient animals exhibited higher tracer contents in tissue samples than wild type animals. Deletion of SGLT1 resulted also in reduced blood glucose elevations and abolished GIP and GLP-1 secretion in response to glucose. In mice lacking GLUT2, glucose-induced insulin but not incretin secretion was impaired. Western blot analysis revealed unchanged protein levels of SGLT1 after glucose gavage. GLUT2 detected in apical membrane fractions mainly resulted from contamination with basolateral membranes but did not change in density after glucose administration. SGLT1 is unequivocally the prime intestinal glucose transporter even at high luminal glucose concentrations. Moreover, SGLT1 mediates glucose-induced incretin secretion. Our studies do not provide evidence for GLUT2 playing any role in either apical glucose influx or incretin secretion

    Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion.

    Get PDF
    Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet β-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia

    Neuronal regulation of glucagon secretion and gluconeogenesis.

    Get PDF
    Hypoglycemia almost never develops in healthy individuals, because multiple hypoglycemia sensing systems, located in the periphery and in the central nervous system, trigger a coordinated counterregulatory hormonal response to restore normoglycemia. This involves not only the secretion of glucagon, but also of epinephrine, norepinephrine, cortisol and growth hormone. Increased hepatic glucose production is also stimulated by direct autonomous nervous connections to the liver that stimulate glycogenolysis and gluconeogenesis. This counterregulatory response, however, becomes deregulated in a significant fraction of diabetes patients that receive insulin therapy. This leads to the risk of developing hypoglycemic episodes, of increasing severity, which negatively impact the quality of life of the patients. How hypoglycemia is detected by the central nervous system is being actively investigated. Recent studies using novel molecular biological, optogenetic and chemogenetic techniques allow the characterization of glucose-sensing neurons, the mechanisms of hypoglycemia detection, the neuronal circuits in which they are integrated and the physiological responses they control. This review discusses recent studies aimed at identifying central hypoglycemia sensing neuronal circuits, how neurons are activated by hypoglycemia and how they restore normoglycemia

    Oxidative phosphorylation flexibility in the liver of mice resistant to high-fat diet-induced hepatic steatosis.

    Get PDF
    OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis

    Gluco-incretins regulate beta-cell glucose competence by epigenetic silencing of Fxyd3 expression.

    Get PDF
    BACKGROUND/AIMS: Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms. METHODS: We searched for genes that were differentially expressed in islets from control and Glp1r-/-; Gipr-/- (dKO) mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed. RESULTS: Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation. CONCLUSIONS/INTERPRETATION: Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes

    Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass.

    Get PDF
    Type 2 diabetes (T2D) is characterized by β cell dysfunction and loss. Single nucleotide polymorphisms in the T-cell factor 7-like 2 (TCF7L2) gene, associated with T2D by genome-wide association studies, lead to impaired β cell function. While deletion of the homologous murine Tcf7l2 gene throughout the developing pancreas leads to impaired glucose tolerance, deletion in the β cell in adult mice reportedly has more modest effects. To inactivate Tcf7l2 highly selectively in β cells from the earliest expression of the Ins1 gene (∼E11.5) we have therefore used a Cre recombinase introduced at the Ins1 locus. Tcfl2(fl/fl)::Ins1Cre mice display impaired oral and intraperitoneal glucose tolerance by 8 and 16 weeks, respectively, and defective responses to the GLP-1 analogue liraglutide at 8 weeks. Tcfl2(fl/fl)::Ins1Cre islets displayed defective glucose- and GLP-1-stimulated insulin secretion and the expression of both the Ins2 (∼20%) and Glp1r (∼40%) genes were significantly reduced. Glucose- and GLP-1-induced intracellular free Ca(2+) increases, and connectivity between individual β cells, were both lowered by Tcf7l2 deletion in islets from mice maintained on a high (60%) fat diet. Finally, analysis by optical projection tomography revealed ∼30% decrease in β cell mass in pancreata from Tcfl2(fl/fl)::Ins1Cre mice. These data demonstrate that Tcf7l2 plays a cell autonomous role in the control of β cell function and mass, serving as an important regulator of gene expression and islet cell coordination. The possible relevance of these findings for the action of TCF7L2 polymorphisms associated with Type 2 diabetes in man is discussed

    Academic freedom in Europe: time for a Magna Charta?

    Get PDF
    This paper is a preliminary attempt to establish a working definition of academic freedom for the European Union states. The paper details why such a definition is required for the European Union and then examines some of the difficulties of defining academic freedom. By drawing upon experience of the legal difficulties beset by the concept in the USA and building on previous analyses of constitutional and legislative protection for academic freedom, and of legal regulations concerning institutional governance and academic tenure, a working definition of academic freedom is then derived. The resultant definition which, it is suggested, could form the basis for a European Magna Charta Libertatis Academicae, goes beyond traditional discussions of academic freedom by specifying not only the rights inherent in the concept but also its accompanying duties, necessary limitations and safeguards. The paper concludes with proposals for how the definition might be tested and carried forward

    Intestinal PPARγ signalling is required for sympathetic nervous system activation in response to caloric restriction.

    Get PDF
    Nuclear receptor PPARγ has been proven to affect metabolism in multiple tissues, and has received considerable attention for its involvement in colon cancer and inflammatory disease. However, its role in intestinal metabolism has been largely ignored. To investigate this potential aspect of PPARγ function, we submitted intestinal epithelium-specific PPARγ knockout mice (iePPARγKO) to a two-week period of 25% caloric restriction (CR), following which iePPARγKO mice retained more fat than their wild type littermates. In attempting to explain this discrepancy, we analysed the liver, skeletal muscle, intestinal lipid trafficking, and the microbiome, none of which appeared to contribute to the adiposity phenotype. Interestingly, under conditions of CR, iePPARγKO mice failed to activate their sympathetic nervous system (SNS) and increase CR-specific locomotor activity. These KO mice also manifested a defective control of their body temperature, which was overly reduced. Furthermore, the white adipose tissue of iePPARγKO CR mice showed lower levels of both hormone-sensitive lipase, and its phosphorylated form. This would result from impaired SNS signalling and possibly cause reduced lipolysis. We conclude that intestinal epithelium PPARγ plays an essential role in increasing SNS activity under CR conditions, thereby contributing to energy mobilization during metabolically stressful episodes
    corecore