10 research outputs found

    Flexibility within the middle ears of vertebrates

    Get PDF
    Introduction and aims: Tympanic middle ears have evolved multiple times independently among vertebrates, and share common features. We review flexibility within tympanic middle ears and consider its physiological and clinical implications. Comparative anatomy: The chain of conducting elements is flexible: even the ‘single ossicle’ ears of most non-mammalian tetrapods are functionally ‘double ossicle’ ears due to mobile articulations between the stapes and extrastapes; there may also be bending within individual elements. Simple models: Simple models suggest that flexibility will generally reduce the transmission of sound energy through the middle ear, although in certain theoretical situations flexibility within or between conducting elements might improve transmission. The most obvious role of middle-ear flexibility is to protect the inner ear from high-amplitude displacements. Clinical implications: Inter-ossicular joint dysfunction is associated with a number of pathologies in humans. We examine attempts to improve prosthesis design by incorporating flexible components

    Bullous myringitis

    Full text link

    Granular myringitis

    Full text link

    Differing Bilateral Benefits for Spatial Release From Masking and Sound Localization Accuracy Using Bone Conduction Devices

    No full text
    Normal binaural hearing facilitates spatial hearing and therefore many everyday listening tasks, such as understanding speech against a backdrop of competing sounds originating from various locations, and localization of sounds. For stimulation with bone conduction hearing devices (BCD), used to alleviate conductive hearing losses, limited transcranial attenuation results in cross-stimulation so that both cochleae are stimulated from the position of the bone conduction transducer. As such, interaural time and level differences, hallmarks of binaural hearing, are unpredictable at the level of the inner ears. The aim of this study was to compare spatial hearing by unilateral and bilateral BCD stimulation in normal-hearing listeners with simulated bilateral conductive hearing loss. DESIGN: Bilateral conductive hearing loss was reversibly induced in 25 subjects (mean age = 28.5 years) with air conduction and bone conduction (BC) pure-tone averages across 0.5, 1, 2, and 4 kHz (PTA(4)) <5 dB HL. The mean (SD) PTA(4) for the simulated conductive hearing loss was 48.2 dB (3.8 dB). Subjects participated in a speech-in-speech task and a horizontal sound localization task in a within-subject repeated measures design (unilateral and bilateral bone conduction stimulation) using Baha 5 clinical sound processors on a softband. For the speech-in-speech task, the main outcome measure was the threshold for 40% correct speech recognition when masking speech and target speech were both colocated (0°) and spatially and symmetrically separated (target 0°, maskers ±30° and ±150°). Spatial release from masking was quantified as the difference between colocated and separated masking and target speech thresholds. For the localization task, the main outcome measure was the overall variance in localization accuracy quantified as an error index (0.0 = perfect performance; 1.0 = random performance). Four stimuli providing various spatial cues were used in the sound localization task. RESULTS: The bilateral BCD benefit for recognition thresholds of speech in competing speech was statistically significant but small regardless if the masking speech signals were colocated with, or spatially and symmetrically separated from, the target speech. Spatial release from masking was identical for unilateral and bilateral conditions, and significantly different from zero. A distinct bilateral BCD sound localization benefit existed but varied in magnitude across stimuli. The smallest benefit occurred for a low-frequency stimulus (octave-filtered noise, CF = 0.5 kHz), and the largest benefit occurred for unmodulated broadband and narrowband (octave-filtered noise, CF = 4.0 kHz) stimuli. Sound localization by unilateral BCD was poor across stimuli. CONCLUSIONS: Results suggest that the well-known transcranial transmission of BC sound affects bilateral BCD benefits for spatial processing of sound in differing ways. Results further suggest that patients with bilateral conductive hearing loss and BC thresholds within the normal range may benefit from a bilateral fitting of BCD, particularly for horizontal localization of sounds

    Continuous 24-hour measurement of middle ear pressure

    No full text
    A new method was developed for continuous measurement of the middle ear pressure during a 24-h period. The equipment consisted of a piezo-electric pressure device and a digital memory. To allow continuous pressure recordings during normal every-day activities the equipment was made light and portable. The measurement accuracy of the equipment as well as the base-line and temperature stability were tested and found to meet to our requirements satisfactorily. In 4 volunteers with different middle ear conditions, a small perforation was made through the tympanic membrane. A rubber stopper containing a small polyethylene tube was fitted into the external ear canal. Tubal function tests were made to establish the equipment's ability to monitor fast pressure changes. The tests were well in accordance with other methods of direct pressure measurements. The equipment was carried by the volunteers for 24 h to monitor any slow or rapid dynamic pressure changes in the middle ear. Four continuous 24-h measurements are presented. The method was found to be suitable for valid measurements of dynamic pressure changes in the middle ear during normal every-day activities. It may become a useful instrument in the search for a better understanding of the development of chronic middle ear disease

    High-Resolution Measurements of Middle Ear Gas Volume Changes in the Rabbit Enables Estimation of its Mucosal CO2 Conductance

    No full text
    Transmucosal CO2 exchange in the middle ear (ME) of the New Zealand White rabbit (Oryctolagus cuniculus) was studied using an accurate novel detecting and recording system for measuring gas volume changes at constant pressure, based on a principle that was previously used by Kania et al. (Acta Otolaryngol 124:408–410, 2004). After the ME cavity was washed with ambient air, the initial diffusion rate of CO2 (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ViCO2{\mathop V\limits^ \bullet }_{{\text{i}}} {\text{CO}}_{2} \end{document}) from the blood perfusing the ME mucosa was calculated from gas volume change measurements. In nine cases, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ViCO2{\mathop V\limits^ \bullet }_{{\text{i}}} {\text{CO}}_{2} \end{document} calculated after normalization due to shifts in baseline was 314 ± 112 μL·h−1 (mean ± SD). In two cases where normalization was not needed, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ViCO2{\mathop V\limits^ \bullet }_{{\text{i}}} {\text{CO}}_{2} \end{document} was 409 μL·h−1 (276 and 543 μL·h−1). Normalization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ViCO2{\mathop V\limits^ \bullet }_{{\text{i}}} {\text{CO}}_{2} \end{document} data was also made in five additional cases where secretion of fluids from the lining of the ear canal was observed. In these cases \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ViCO2{\mathop V\limits^ \bullet }_{{\text{i}}} {\text{CO}}_{2} \end{document} was 245 ± 142 μL·h−1. No differences were found between results obtained in the three groups. Thus, an overall mean value of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}ViCO2{\mathop V\limits^ \bullet }_{{\text{i}}} {\text{CO}}_{2} \end{document} of 305 ± 131 μL·h−1 (n = 16) was calculated. An effective coefficient of conductance of CO2 (G2) between the mucosal circulation and the ME gas cavity of the New Zealand White rabbit was estimated to be ≈0.05 μL (h·Pa)−1 and compared to the G2 estimated for humans in a different study

    Quasi-static Transfer Function of the Rabbit Middle Ear‚ Measured with a Heterodyne Interferometer with High-Resolution Position Decoder

    No full text
    Due to changes in ambient pressure and to the gas-exchange processes in the middle ear (ME) cavity, the ear is subject to ultra-low-frequency pressure variations, which are many orders of magnitude larger than the loudest acoustic pressures. Little quantitative data exist on how ME mechanics deals with these large quasi-static pressure changes and because of this lack of data, only few efforts could be made to incorporate quasi-static behavior into computer models. When designing and modeling ossicle prostheses and implantable ME hearing aids, the effects of large ossicle movements caused by quasi-static pressures should be taken into account. We investigated the response of the ME to slowly varying pressures by measuring the displacement of the umbo and the stapes in rabbit with a heterodyne interferometer with position decoder. Displacement versus pressure curves were obtained at linear pressure change rates between 200 Pa/s and 1.5 kPa/s, with amplitude ±2.5 kPa. The change in stapes position associated with a pressure change is independent of pressure change rate (34 μm peak-to-peak at ±2.5 kPa). The stapes displacement versus pressure curves are highly nonlinear and level off for pressures beyond ±1 kPa. Stapes motion shows no measurable hysteresis at 1.5 kPa/s, which demonstrates that the annular ligament has little viscoelasticity. Hysteresis increases strongly at the lowest pressure change rates. The stapes moves in phase with the umbo and with pressure, but the sense of rotation of the hysteresis loop of stapes is phase inversed. Stapes motion is not a simple lever ratio mimic of umbo motion, but is the consequence of complex changes in ossicle joints and ossicle position. The change in umbo position produced by a ±2.5 kPa pressure change decreases with increasing rate from 165 μm at 200 Pa/s to 118 μm at 1.5 kPa/s. Umbo motion already shows significant hysteresis at 1.5 kPa/s, but hysteresis increases further as pressure change rate decreases. We conclude that in the quasi-static regime, ossicle movement is not only governed by viscoelasticity, but that other effects become dominant as pressure change rate decreases below 1 kPa/s. The increasing hysteresis can be caused by increasing friction as speed of movement decreases, and incorporating speed-dependent friction coefficients will be essential to generate realistic models of ossicle movements at slow pressure change rates
    corecore