3,255 research outputs found

    Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field

    Full text link
    Inelastic tunneling through magnetically anisotropic molecules is studied theoretically in the presence of a strong magnetic field. Since the molecular orientation is not well controlled in tunneling experiments, we consider arbitrary angles between easy axis and field. This destroys all conservation laws except that of charge, leading to a rich fine structure in the differential conductance. Besides single molecules we also study monolayers of molecules with either aligned or random easy axes. We show that detailed information on the molecular transitions and orientations can be obtained from the differential conductance for varying magnetic field. For random easy axes, averaging over orientations leads to van Hove singularities in the differential conductance. Rate equations in the sequential-tunneling approximation are employed. An efficient approximation for their solution for complex molecules is presented. The results are applied to Mn12-based magnetic molecules.Comment: 10 pages, 10 figures include

    Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions

    Full text link
    We study the interplay of polaronic effect and superconductivity in transport through molecular Josephson junctions. The tunneling rates of electrons are dominated by vibronic replicas of the superconducting gap, which show up as prominent features in the differential conductance for the dc and ac current. For relatively large molecule-lead coupling, a features that appears when the Josephson frequency matches the vibron frequency can be identified with an over-the-gap structure observed by Marchenkov et al. [Nat. Nanotech. 2, 481 (2007)]. However, we are more concerned with the weak-coupling limit, where resonant tunneling through the molecular level dominates. We find that certain features involving both Andreev reflection and vibron emission show an unusual shift of the bias voltage V at their maximum with the gate voltage V_g as V ~ (2/3) V_g. Moreover, due to the polaronic effect, the ac Josephson current shows a phase shift of pi when the bias eV is increased by one vibronic energy quantum hbar omega_v. This distinctive even-odd effect is explained in terms of the different sign of the coupling to vibrons of electrons and of Andreev-reflected holes.Comment: 7 pages, 5 figure

    Liquid antiferromagnets in two dimensions

    Full text link
    It is shown that, for proper symmetry of the parent lattice, antiferromagnetic order can survive in two-dimensional liquid crystals and even isotropic liquids of point-like particles, in contradiction to what common sense might suggest. We discuss the requirements for antiferromagnetic order in the absence of translational and/or orientational lattice order. One example is the honeycomb lattice, which upon melting can form a liquid crystal with quasi-long-range orientational and antiferromagnetic order but short-range translational order. The critical properties of such systems are discussed. Finally, we draw conjectures for the three-dimensional case.Comment: 4 pages RevTeX, 4 figures include

    Doping dependence of the Neel temperature in Mott-Hubbard antiferromagnets: Effect of vortices

    Full text link
    The rapid destruction of long-range antiferromagnetic order upon doping of Mott-Hubbard antiferromagnetic insulators is studied within a generalized Berezinskii-Kosterlitz-Thouless renormalization group theory in accordance with recent calculations suggesting that holes dress with vortices. We calculate the doping-dependent Neel temperature in good agreement with experiments for high-Tc cuprates. Interestingly, the critical doping where long-range order vanishes at zero temperature is predicted to be xc ~ 0.02, independently of any energy scales of the system.Comment: 4 pages with 3 figures included, minor revisions, to be published in PR

    Renormalization group approach to layered superconductors

    Full text link
    A renormalization group theory for a system consisting of coupled superconducting layers as a model for typical high-temperature superconducters is developed. In a first step the electromagnetic interaction over infinitely many layers is taken into account, but the Josephson coupling is neglected. In this case the corrections to two-dimensional behavior due to the presence of the other layers are very small. Next, renormalization group equations for a layered system with very strong Josephson coupling are derived, taking into account only the smallest possible Josephson vortex loops. The applicability of these two limiting cases to typical high-temperature superconductors is discussed. Finally, it is argued that the original renormalization group approach by Kosterlitz is not applicable to a layered system with intermediate Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by conventional mail; accepted for publication in Phys. Rev.

    Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise

    Full text link
    The carrier spin and impurity spin densities in diluted magnetic semiconductors are considered using a semiclassical approach. Equations of motions for the spin densities and the carrier spin current density in the paramagnetic phase are derived, exhibiting their coupled diffusive dynamics. The dynamical spin susceptibilities are obtained from these equations. The theory holds for p-type and n-type semiconductors doped with magnetic ions of arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown to lead to anisotropic spin diffusion and to a suppression of the Curie temperature in p-type materials. As an application we derive the Hall-voltage noise in the paramagnetic phase. This quantity is critically enhanced close to the Curie temperature due to the contribution from the anomalous Hall effect.Comment: 18 pages, 1 figure include

    Disorder-Induced Resistive Anomaly Near Ferromagnetic Phase Transitions

    Full text link
    We show that the resistivity rho(T) of disordered ferromagnets near, and above, the Curie temperature T_c generically exhibits a stronger anomaly than the scaling-based Fisher-Langer prediction. Treating transport beyond the Boltzmann description, we find that within mean-field theory, d\rho/dT exhibits a |T-T_c|^{-1/2} singularity near T_c. Our results, being solely due to impurities, are relevant to ferromagnets with low T_c, such as SrRuO3 or diluted magnetic semiconductors, whose mobility near T_c is limited by disorder.Comment: 5 pages, 3 figures; V2: with a few clarifications, as publishe
    corecore