3,255 research outputs found
Tunneling through magnetic molecules with arbitrary angle between easy axis and magnetic field
Inelastic tunneling through magnetically anisotropic molecules is studied
theoretically in the presence of a strong magnetic field. Since the molecular
orientation is not well controlled in tunneling experiments, we consider
arbitrary angles between easy axis and field. This destroys all conservation
laws except that of charge, leading to a rich fine structure in the
differential conductance. Besides single molecules we also study monolayers of
molecules with either aligned or random easy axes. We show that detailed
information on the molecular transitions and orientations can be obtained from
the differential conductance for varying magnetic field. For random easy axes,
averaging over orientations leads to van Hove singularities in the differential
conductance. Rate equations in the sequential-tunneling approximation are
employed. An efficient approximation for their solution for complex molecules
is presented. The results are applied to Mn12-based magnetic molecules.Comment: 10 pages, 10 figures include
Polaron effects on the dc- and ac-tunneling characteristics of molecular Josephson junctions
We study the interplay of polaronic effect and superconductivity in transport
through molecular Josephson junctions. The tunneling rates of electrons are
dominated by vibronic replicas of the superconducting gap, which show up as
prominent features in the differential conductance for the dc and ac current.
For relatively large molecule-lead coupling, a features that appears when the
Josephson frequency matches the vibron frequency can be identified with an
over-the-gap structure observed by Marchenkov et al. [Nat. Nanotech. 2, 481
(2007)]. However, we are more concerned with the weak-coupling limit, where
resonant tunneling through the molecular level dominates. We find that certain
features involving both Andreev reflection and vibron emission show an unusual
shift of the bias voltage V at their maximum with the gate voltage V_g as V ~
(2/3) V_g. Moreover, due to the polaronic effect, the ac Josephson current
shows a phase shift of pi when the bias eV is increased by one vibronic energy
quantum hbar omega_v. This distinctive even-odd effect is explained in terms of
the different sign of the coupling to vibrons of electrons and of
Andreev-reflected holes.Comment: 7 pages, 5 figure
A Benefit Transfer Toolkit for Fish, Wildlife, Wetlands, and Open Space
Resource /Energy Economics and Policy,
Liquid antiferromagnets in two dimensions
It is shown that, for proper symmetry of the parent lattice,
antiferromagnetic order can survive in two-dimensional liquid crystals and even
isotropic liquids of point-like particles, in contradiction to what common
sense might suggest. We discuss the requirements for antiferromagnetic order in
the absence of translational and/or orientational lattice order. One example is
the honeycomb lattice, which upon melting can form a liquid crystal with
quasi-long-range orientational and antiferromagnetic order but short-range
translational order. The critical properties of such systems are discussed.
Finally, we draw conjectures for the three-dimensional case.Comment: 4 pages RevTeX, 4 figures include
Doping dependence of the Neel temperature in Mott-Hubbard antiferromagnets: Effect of vortices
The rapid destruction of long-range antiferromagnetic order upon doping of
Mott-Hubbard antiferromagnetic insulators is studied within a generalized
Berezinskii-Kosterlitz-Thouless renormalization group theory in accordance with
recent calculations suggesting that holes dress with vortices. We calculate the
doping-dependent Neel temperature in good agreement with experiments for
high-Tc cuprates. Interestingly, the critical doping where long-range order
vanishes at zero temperature is predicted to be xc ~ 0.02, independently of any
energy scales of the system.Comment: 4 pages with 3 figures included, minor revisions, to be published in
PR
Avaliação nutricional e sensorial de barrinhas de cereais contendo suspensão de nanofibrilas de celulose de casca de pinhão.
Resumo
Renormalization group approach to layered superconductors
A renormalization group theory for a system consisting of coupled
superconducting layers as a model for typical high-temperature superconducters
is developed. In a first step the electromagnetic interaction over infinitely
many layers is taken into account, but the Josephson coupling is neglected. In
this case the corrections to two-dimensional behavior due to the presence of
the other layers are very small. Next, renormalization group equations for a
layered system with very strong Josephson coupling are derived, taking into
account only the smallest possible Josephson vortex loops. The applicability of
these two limiting cases to typical high-temperature superconductors is
discussed. Finally, it is argued that the original renormalization group
approach by Kosterlitz is not applicable to a layered system with intermediate
Josephson coupling.Comment: RevTeX, 15 pages, 4 figures can be obtained from the author by
conventional mail; accepted for publication in Phys. Rev.
Magnetic susceptibilities of diluted magnetic semiconductors and anomalous Hall-voltage noise
The carrier spin and impurity spin densities in diluted magnetic
semiconductors are considered using a semiclassical approach. Equations of
motions for the spin densities and the carrier spin current density in the
paramagnetic phase are derived, exhibiting their coupled diffusive dynamics.
The dynamical spin susceptibilities are obtained from these equations. The
theory holds for p-type and n-type semiconductors doped with magnetic ions of
arbitrary spin quantum number. Spin-orbit coupling in the valence band is shown
to lead to anisotropic spin diffusion and to a suppression of the Curie
temperature in p-type materials. As an application we derive the Hall-voltage
noise in the paramagnetic phase. This quantity is critically enhanced close to
the Curie temperature due to the contribution from the anomalous Hall effect.Comment: 18 pages, 1 figure include
Disorder-Induced Resistive Anomaly Near Ferromagnetic Phase Transitions
We show that the resistivity rho(T) of disordered ferromagnets near, and
above, the Curie temperature T_c generically exhibits a stronger anomaly than
the scaling-based Fisher-Langer prediction. Treating transport beyond the
Boltzmann description, we find that within mean-field theory, d\rho/dT exhibits
a |T-T_c|^{-1/2} singularity near T_c. Our results, being solely due to
impurities, are relevant to ferromagnets with low T_c, such as SrRuO3 or
diluted magnetic semiconductors, whose mobility near T_c is limited by
disorder.Comment: 5 pages, 3 figures; V2: with a few clarifications, as publishe
- …
