3,030 research outputs found

    Prediction of VO\u3csub\u3e2\u3c/sub\u3e Peak Using Sub-Maximum Bench Step Test in Children

    Get PDF
    The purpose of this study was to develop a valid prediction of maximal oxygen uptake from data collected during a submaximum bench stepping test among children ages 8-12 years. Twentyseven active subjects (16 male and 11 female), weight 36.1 kg, height 144.4 cm and VO2 47.4 ± 7.9 ml/kg/min participated. Subjects completed a maximal oxygen consumption test with analysis of expired air and a submaximal bench stepping test. A formula to predict VO2max was developed from height, resting heart rate and heart rate response during the submaximum bench stepping test. This formula accounted for 71% of the variability in maximal oxygen consumption and is the first step in verifying the validity of the submaximum bench stepping test to predict VO2max. VO2max = -2.354 + (Height in cm * 0.065) + (Resting Heart Rate * 0.008) + (Step Test Average Heart Rate as a Percentage of Resting Heart Rate * -0.870

    Anisotropic glass-like properties in tetragonal disordered crystals

    Full text link
    The low temperature acoustic and thermal properties of amorphous, glassy materials are remarkably similar. All these properties are described theoretically with reasonable quantitative accuracy by assuming that the amorphous solid contains dynamical defects that can be described at low temperatures as an ensemble of two-level systems (TLS), but the deep nature of these TLSs is not clarified yet. Moreover, glassy properties were found also in disordered crystals, quasicrystals, and even perfect crystals with a large number of atoms in the unit cell. In crystals, the glassy properties are not universal, like in amorphous materials, and also exhibit anisotropy. Recently it was proposed a model for the interaction of two-level systems with arbitrary strain fields (Phys. Rev. B 75, 64202, 2007), which was used to calculate the thermal properties of nanoscopic membranes at low temperatures. The model is also suitable for the description of anisotropic crystals. We describe here the results of the calculation of anisotropic glass-like properties in crystals of various lattice symmetries, emphasizing the tetragonal symmetry.Comment: 5 pages, no figure

    Scattering of phonons on two-level systems in disordered crystals

    Full text link
    We calculate the scattering rates of phonons on two-level systems in disordered trigonal and hexagonal crystals. We apply a model in which the two-level system, characterized by a direction in space, is coupled to the strain field of the phonon via a tensor of coupling constants. The structure of the tensor of coupling constants is similar to the structure of the tensor of elastic stiffness constants, in the sense that they are determined by the same symmetry transformations. In this way, we emphasize the anisotropy of the interaction of elastic waves with the ensemble of two-level systems in disordered crystals. We also point to the fact that the ratio γl/γt\gamma_l/\gamma_t has a much broader range of allowed values in disordered crystals than in isotropic solids.Comment: 5 pages, no figure

    Prehabilitation Before Total Knee Arthroplasty Increases Strength and Function in Older Adults With Severe Osteoarthritis

    Get PDF
    Preparing for the stress of total knee arthroplasty (TKA) surgery by exercise training (prehabilitation) may improve strength and function before surgery and, if effective, has the potential to contribute to postoperative recovery. Subjects with severe osteoarthritis (OA), pain intractable to medicine and scheduled for TKA were randomized into a usual care (UC) group (n = 36) or usual care and exercise (UC + EX) group (n = 35). The UC group maintained normal daily activities before their TKA. The UC + EX group performed a comprehensive prehabilitation program that included resistance training using bands, flexibility, and step training at least 3 times per week for 4-8 weeks before their TKA in addition to UC. Leg strength (isokinetic peak torque for knee extension and flexion) and ability to perform functional tasks (6-minute walk, 30 second sit-to-stand repetitions, and the time to ascend and descend 2 flights of stairs) were assessed before randomization at baseline (T1) and 1 week before the subject\u27s TKA (T2). Repeated-measures analysis of variance indicated a significant group by time interaction (p \u3c 0.05) for the 30-second sit-to-stand repetitions, time to ascend the first flight of stairs, and peak torque for knee extension in the surgical knee. Prehabilitation increased leg strength and the ability to perform functional tasks for UC + EX when compared to UC before TKA. Short term (4-8 weeks) of prehabilitation was effective for increasing strength and function for individuals with severe OA. The program studied is easily transferred to a home environment, and clinicians working with this population should consider prehabilitation before TKA. [PUBLICATION ABSTRACT

    The Qualified Legal Compliance Committee: Using the Attorney Conduct Rules to Restructure the Board of Directors

    Get PDF
    The Securities and Exchange Commission introduced a new corporate governance structure, the qualified legal compliance committee, as part of the professional standards of conduct for attorneys mandated by the Sarbanes-Oxley Act of 2002. QLCCs are consistent with the Commission\u27s general approach to improving corporate governance through specialized committees of independent directors. This Article suggests, however, that assessing the benefits and costs of creating QLCCs may be more complex than is initially apparent. Importantly, QLCCs are unlikely to be effective in the absence of incentives for active director monitoring. This Article concludes by considering three ways of increasing these incentives

    Internal Friction of Amorphous Silicon in a Magnetic Field

    Full text link
    The internal friction of e-beam amorphous silicon was measured in a magnetic field between 0 and 6 T, from 1.5-20 K, and was found to be independent of the field to better than 8%. It is concluded that the low energy excitations observed in this experiment are predominantly atomic in nature.Comment: 4 pages, 4 figures, REVTe

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    Impacts of Climate Change on indirect human exposure to pathogens and chemicals from agriculture

    Get PDF
    Objective: Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources: In this review, we used expert input and considered literature on climate change ; health effects resulting from exposure to pathogens and chemicals arising from agriculture ; inputs of chemicals and pathogens to agricultural systems ; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis: We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment ; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems ; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions: Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes
    corecore