787 research outputs found
Quantum dynamics of the avian compass
The ability of migratory birds to orient relative to the Earth's magnetic
field is believed to involve a coherent superposition of two spin states of a
radical electron pair. However, the mechanism by which this coherence can be
maintained in the face of strong interactions with the cellular environment has
remained unclear. This Letter addresses the problem of decoherence between two
electron spins due to hyperfine interaction with a bath of spin 1/2 nuclei.
Dynamics of the radical pair density matrix are derived and shown to yield a
simple mechanism for sensing magnetic field orientation. Rates of dephasing and
decoherence are calculated ab initio and found to yield millisecond coherence
times, consistent with behavioral experiments
Towards a Macroscopic Modelling of the Complexity in Traffic Flow
We present a macroscopic traffic flow model that extends existing fluid-like
models by an additional term containing the second derivative of the safe
velocity. Two qualitatively different shapes of the safe velocity are explored:
a conventional Fermi-type function and a function exhibiting a plateau at
intermediate densities. The suggested model shows an extremely rich dynamical
behaviour and shows many features found in real-world traffic data.Comment: submitted to Phys. Rev.
Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model
The present paper proposes a novel interpretation of the widely scattered
states (called synchronized traffic) stimulated by Kerner's hypotheses about
the existence of a multitude of metastable states in the fundamental diagram.
Using single vehicle data collected at the German highway A1, temporal velocity
patterns have been analyzed to show a collection of certain fragments with
approximately constant velocities and sharp jumps between them. The particular
velocity values in these fragments vary in a wide range. In contrast, the flow
rate is more or less constant because its fluctuations are mainly due to the
discreteness of traffic flow.
Subsequently, we develop a model for synchronized traffic that can explain
these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke,
Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car
density, mean velocity, and additional order parameters and that are
due to the many-particle effects of the vehicle interaction. The parameter
describes the multilane correlations in the vehicle motion. Together with the
car density it determines directly the mean velocity. The parameter , in
contrast, controls the evolution of only. The model assumes that
fluctuates randomly around the value corresponding to the car configuration
optimal for lane changing. When it deviates from this value the lane change is
depressed for all cars forming a local cluster. Since exactly the overtaking
manoeuvres of these cars cause the order parameter to vary, the evolution
of the car arrangement becomes frozen for a certain time. In other words, the
evolution equations form certain dynamical traps responsible for the long-time
correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
Autonomous detection and anticipation of jam fronts from messages propagated by inter-vehicle communication
In this paper, a minimalist, completely distributed freeway traffic
information system is introduced. It involves an autonomous, vehicle-based jam
front detection, the information transmission via inter-vehicle communication,
and the forecast of the spatial position of jam fronts by reconstructing the
spatiotemporal traffic situation based on the transmitted information. The
whole system is simulated with an integrated traffic simulator, that is based
on a realistic microscopic traffic model for longitudinal movements and lane
changes. The function of its communication module has been explicitly validated
by comparing the simulation results with analytical calculations. By means of
simulations, we show that the algorithms for a congestion-front recognition,
message transmission, and processing predict reliably the existence and
position of jam fronts for vehicle equipment rates as low as 3%. A reliable
mode of operation already for small market penetrations is crucial for the
successful introduction of inter-vehicle communication. The short-term
prediction of jam fronts is not only useful for the driver, but is essential
for enhancing road safety and road capacity by intelligent adaptive cruise
control systems.Comment: Published in the Proceedings of the Annual Meeting of the
Transportation Research Board 200
Cellular automata approach to three-phase traffic theory
The cellular automata (CA) approach to traffic modeling is extended to allow
for spatially homogeneous steady state solutions that cover a two dimensional
region in the flow-density plane. Hence these models fulfill a basic postulate
of a three-phase traffic theory proposed by Kerner. This is achieved by a
synchronization distance, within which a vehicle always tries to adjust its
speed to the one of the vehicle in front. In the CA models presented, the
modelling of the free and safe speeds, the slow-to-start rules as well as some
contributions to noise are based on the ideas of the Nagel-Schreckenberg type
modelling. It is shown that the proposed CA models can be very transparent and
still reproduce the two main types of congested patterns (the general pattern
and the synchronized flow pattern) as well as their dependence on the flows
near an on-ramp, in qualitative agreement with the recently developed continuum
version of the three-phase traffic theory [B. S. Kerner and S. L. Klenov. 2002.
J. Phys. A: Math. Gen. 35, L31]. These features are qualitatively different
than in previously considered CA traffic models. The probability of the
breakdown phenomenon (i.e., of the phase transition from free flow to
synchronized flow) as function of the flow rate to the on-ramp and of the flow
rate on the road upstream of the on-ramp is investigated. The capacity drops at
the on-ramp which occur due to the formation of different congested patterns
are calculated.Comment: 55 pages, 24 figure
Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model
We derive macroscopic traffic equations from specific gas-kinetic equations,
dropping some of the assumptions and approximations made in previous papers.
The resulting partial differential equations for the vehicle density and
average velocity contain a non-local interaction term which is very favorable
for a fast and robust numerical integration, so that several thousand freeway
kilometers can be simulated in real-time. The model parameters can be easily
calibrated by means of empirical data. They are directly related to the
quantities characterizing individual driver-vehicle behavior, and their optimal
values have the expected order of magnitude. Therefore, they allow to
investigate the influences of varying street and weather conditions or freeway
control measures. Simulation results for realistic model parameters are in good
agreement with the diverse non-linear dynamical phenomena observed in freeway
traffic.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.theo2.physik.uni-stuttgart.de/treiber.htm
Life events and hemodynamic stress reactivity in the middle-aged and elderly
Recent versions of the reactivity hypothesis, which consider it to be the product of stress exposure and exaggerated haemodynamic reactions to stress that confers cardiovascular disease risk, assume that reactivity is independent of the experience of stressful life events. This assumption was tested in two substantial cohorts, one middle-aged and one elderly. Participants had to indicate from a list of major stressful life events up to six they had experienced in the previous two years. They were also asked to rate how disruptive and stressful they were, at the time of occurrence and now. Blood pressure and pulse rate were measured at rest and in response to acute mental stress. Those who rated the events as highly disruptive at the time of exposure and currently exhibited blunted systolic blood pressure reactions to acute stress. The present results suggest that acute stress reactivity may not be independent of stressful life events experience
New Insights into Traffic Dynamics: A Weighted Probabilistic Cellular Automaton Model
From the macroscopic viewpoint for describing the acceleration behavior of
drivers, this letter presents a weighted probabilistic cellular automaton model
(the WP model, for short) by introducing a kind of random acceleration
probabilistic distribution function. The fundamental diagrams, the
spatio-temporal pattern are analyzed in detail. It is shown that the presented
model leads to the results consistent with the empirical data rather well,
nonlinear velocity-density relationship exists in lower density region, and a
new kind of traffic phenomenon called neo-synchronized flow is resulted.
Furthermore, we give the criterion for distinguishing the high-speed and
low-speed neo-synchronized flows and clarify the mechanism of this kind of
traffic phenomena. In addition, the result that the time evolution of
distribution of headways is displayed as a normal distribution further
validates the reasonability of the neo-synchronized flow. These findings
suggest that the diversity and randomicity of drivers and vehicles has indeed
remarkable effect on traffic dynamics.Comment: 12 pages, 5 figures, submitted to Europhysics Letter
- …
