891 research outputs found
Superconductivity in the New Platinum Germanides MPt4Ge12 (M = Rare-earth and Alkaline-earth Metals) with Filled Skutterudite Structure
New germanium-platinum compounds with the filled-skutterudite crystal
structure were synthesized. The structure and composition were investigated by
X-ray diffraction and microprobe analysis. Magnetic susceptibility, specific
heat, and electrical resistivity measurements evidence superconductivity in
LaPt4Ge12 and PrPt4Ge12 below 8.3K. The parameters of the normal and
superconducting states were established. Strong coupling and a crystal electric
field singlet groundstate is found for the Pr compound. Electronic structure
calculations show a large density of states at the Fermi level. Similar
behavior with lower T_c was observed for SrPt4Ge12 and BaPt4Ge12.Comment: RevTeX, 4 figures, submitted to Physical Review Letters July 12, 200
High spin polarization in the ferromagnetic filled skutterudites KFe4Sb12 and NaFe4Sb12
The spin polarization of ferromagnetic alkali-metal iron antimonides KFe4Sb12
and NaFe4Sb12 is studied by point-contact Andreev reflection using
superconducting Nb and Pb tips. From these measurements an intrinsic transport
spin polarization Pt of 67% and 60% for the K and Na compound, respectively, is
inferred which establishes these materials as a new class of highly spin
polarized ferromagnets. The results are in accord with band structure
calculations within the local spin density approximation (LSDA) that predict
nearly 100% spin polarization in the density of states. We discuss the impact
of calculated Fermi velocities and spin fluctuations on Pt.Comment: Pdf file with fi
Observation of Magnetic Flux Generated Spontaneously During a Rapid Quench of Superconducting Films
We report observations of spontaneous formation of magnetic flux lines during
a rapid quench of YBaCuO films through T. This
effect is predicted according to the Kibble-Zurek mechanism of creation of
topological defects of the order parameter during a symmetry-breaking phase
transition. Our previous experiment, at a quench rate of 20K/sec, gave null
results. In the present experiment, the quench rate was increased to
\TEXTsymbol{>} 10 K/sec. Within experimental resolution, the dependence
of the measured flux on the cooling rate is consistent with the prediction
Theory of Thermal Conductivity in YBa_2Cu_3O_{7-\delta}
We calculate the electronic thermal conductivity in a d-wave superconductor,
including both the effect of impurity scattering and inelastic scattering by
antiferromagnetic spin fluctuations. We analyze existing experiments,
particularly with regard to the question of the relative importance of
electronic and phononic contributions to the heat current, and to the influence
of disorder on low-temperature properties. We find that phonons dominate heat
transport near T_c, but that electrons are responsible for most of the peak
observed in clean samples, in agreement with a recent analysis of Krishana et
al. In agreement with recent data on YBa_2(Cu_1-xZn_x)_3O_7-\delta the peak
position is found to vary nonmonotonically with disorder.Comment: 4 pages, 4 figures, to be published in Phys. Rev. Let
Lorenz function of BiTe/SbTe superlattices
Combining first principles density functional theory and semi-classical
Boltzmann transport, the anisotropic Lorenz function was studied for
thermoelectric BiTe/SbTe superlattices and their bulk
constituents. It was found that already for the bulk materials BiTe
and SbTe, the Lorenz function is not a pellucid function on charge
carrier concentration and temperature. For electron-doped
BiTe/SbTe superlattices large oscillatory deviations
for the Lorenz function from the metallic limit were found even at high charge
carrier concentrations. The latter can be referred to quantum well effects,
which occur at distinct superlattice periods
Impulsive light-scattering by coherent phonons in LaAlO3: Disorder and boundary effects
Pump-probe measurements of coherent-phonon-induced changes of refractive index in LaAlO3 are dominated by normally weak boundary effects. Atomic displacements in the range 50–500 μÅ were generated and probed by femtosecond laser pulses through impulsive Raman scattering. The absence of a bulk contribution is ascribed to phase mismatch due to domain disorder. Selection rules are consistent with a Raman model considering reflection and transmission at interfaces. Intensities and phonon parameters as a function of temperature agree well with incoherent Raman data
Hole Localization in Underdoped Superconducting Cuprates Near 1/8th Doping
Measurements of thermal conductivity versus temperature over a broad range of
doping in YBaCuO and HgBaCaCuO
(=1,2,3) suggest that small domains of localized holes develop for hole
concentrations near =1/8. The data imply a mechanism for localization that
is intrinsic to the CuO-planes and is enhanced via pinning associated with
oxygen-vacancy clusters.Comment: 4 pages, 4 eps fig.'s, to be published, Phys. Rev.
Separation of Quasiparticle and Phononic Heat Currents in YBCO
Measurements of the transverse (k_{xy}) and longitudinal (k_{xx}) thermal
conductivity in high magnetic fields are used to separate the quasiparticle
thermal conductivity (k_{xx}^{el}) of the CuO_2-planes from the phononic
thermal conductivity in YBa_2Cu_3O_{7-\delta}. k_{xx}^{el} is found to display
a pronounced maximum below T_c. Our data analysis reveals distinct transport
(\tau) and Hall (\tau_H) relaxation times below T_c: Whereas \tau is strongly
enhanced, \tau_H follows the same temperature dependence as above T_c
Evidence for field-induced excitations in low-temperature thermal conductivity of Bi_2Sr_2CaCu_2O_8
The thermal conductivity ,, of Bi_2Sr_2CaCu_2O_8 was studied as a
function of magnetic field. Above 5 K, after an initial decrease,
presents a kink followed by a plateau, as recently reported by Krishana et al..
By contrast, below 1K, the thermal conductivity was found to \emph{increase}
with increasing field. This behavior is indicative of a finite density of
states and is not compatible with the existence of a field-induced fully gapped
state which was recently proposed to describe the
plateau regime. Our low-temperature results are in agreement with recent works
predicting a field-induced enhancement of thermal conductivity by Doppler shift
of quasi-particle spectrum.Comment: 4 pages including 4 eps figures, submitted to Phys. Rev. Let
Time- and momentum-resolved probe of heat transport in photo-excited bismuth
We use time- and momentum-resolved x-ray scattering to study thermalization in a photo-excited thin single crystal bismuth film on sapphire. The time-resolved changes of the diffuse scattering show primarily a quasi-thermal phonon distribution that is established in less than or similar to 100 ps and that follows the time-scale of thermal transport. Ultrafast melting measurements under high laser excitation show that epitaxial regrowth of the liquid phase occurs on the time-scale of thermal transport across the bismuth-sapphire interface. (C) 2013 AIP Publishing LLC. (DOI: 10.1063/1.4804291
- …
