2,661 research outputs found
From X-ray dips to eclipse: Witnessing disk reformation in the recurrent nova USco
The 10th recorded outburst of the recurrent eclipsing nova USco was observed
simultaneously in X-ray, UV, and optical by XMM-Newton on days 22.9 and 34.9
after outburst. Two full passages of the companion in front of the nova ejecta
were observed, witnessing the reformation of the accretion disk. On day 22.9,
we observed smooth eclipses in UV and optical but deep dips in the X-ray light
curve which disappeared by day 34.9, then yielding clean eclipses in all bands.
X-ray dips can be caused by clumpy absorbing material that intersects the line
of sight while moving along highly elliptical trajectories. Cold material from
the companion could explain the absence of dips in UV and optical light. The
disappearance of X-ray dips before day 34.9 implies significant progress in the
formation of the disk. The X-ray spectra contain photospheric continuum
emission plus strong emission lines, but no clear absorption lines. Both
continuum and emission lines in the X-ray spectra indicate a temperature
increase from day 22.9 to day 34.9. We find clear evidence in the spectra and
light curves for Thompson scattering of the photospheric emission from the
white dwarf. Photospheric absorption lines can be smeared out during scattering
in a plasma of fast electrons. We also find spectral signatures of resonant
line scattering that lead to the observation of the strong emission lines.
Their dominance could be a general phenomenon in high-inclination systems such
as Cal87.Comment: Submitted to ApJ. 16 pages, 16 figure
Swift X-ray Observations of Classical Novae
The new gamma-ray burst mission Swift has obtained pointed observations of
several classical novae in outburst. We analyzed all the observations of
classical novae from the Swift archive up to 30 June, 2006. We analyzed usable
observations of 12 classical novae and found 4 non-detections, 3 weak sources
and 5 strong sources. This includes detections of 2 novae exhibiting spectra
resembling those of Super Soft X-ray binary Source spectra (SSS) implying
ongoing nuclear burning on the white dwarf surface. With these new Swift data,
we add to the growing statistics of the X-ray duration and characteristics of
classical novae.Comment: Accepted for ApJ; this version contains additional material: 18
pages, 16 figure
Cost-effectiveness analysis of 3-D computerized tomography colonography versus optical colonoscopy for imaging symptomatic gastroenterology patients.
BACKGROUND: When symptomatic gastroenterology patients have an indication for colonic imaging, clinicians have a choice between optical colonoscopy (OC) and computerized tomography colonography with three-dimensional reconstruction (3-D CTC). 3-D CTC provides a minimally invasive and rapid evaluation of the entire colon, and it can be an efficient modality for diagnosing symptoms. It allows for a more targeted use of OC, which is associated with a higher risk of major adverse events and higher procedural costs. A case can be made for 3-D CTC as a primary test for colonic imaging followed if necessary by targeted therapeutic OC; however, the relative long-term costs and benefits of introducing 3-D CTC as a first-line investigation are unknown. AIM: The aim of this study was to assess the cost effectiveness of 3-D CTC versus OC for colonic imaging of symptomatic gastroenterology patients in the UK NHS. METHODS: We used a Markov model to follow a cohort of 100,000 symptomatic gastroenterology patients, aged 50 years or older, and estimate the expected lifetime outcomes, life years (LYs) and quality-adjusted life years (QALYs), and costs (£, 2010-2011) associated with 3-D CTC and OC. Sensitivity analyses were performed to assess the robustness of the base-case cost-effectiveness results to variation in input parameters and methodological assumptions. RESULTS: 3D-CTC provided a similar number of LYs (7.737 vs 7.739) and QALYs (7.013 vs 7.018) per individual compared with OC, and it was associated with substantially lower mean costs per patient (£467 vs £583), leading to a positive incremental net benefit. After accounting for the overall uncertainty, the probability of 3-D CTC being cost effective was around 60 %, at typical willingness-to-pay values of £20,000-£30,000 per QALY gained. CONCLUSION: 3-D CTC is a cost-saving and cost-effective option for colonic imaging of symptomatic gastroenterology patients compared with OC
Multi-wavelength observations of Proxima Centauri
We report simultaneous observations of the nearby flare star Proxima Centauri
with VLT/UVES and XMM-Newton over three nights in March 2009. Our optical and
X-ray observations cover the star's quiescent state, as well as its flaring
activity and allow us to probe the stellar atmospheric conditions from the
photosphere into the chromosphere, and then the corona during its different
activity stages. Using the X-ray data, we investigate variations in coronal
densities and abundances and infer loop properties for an intermediate-sized
flare. The optical data are used to investigate the magnetic field and its
possible variability, to construct an emission line list for the chromosphere,
and use certain emission lines to construct physical models of Proxima
Centauri's chromosphere.
We report the discovery of a weak optical forbidden Fe xiii line at 3388 AA
during the more active states of Proxima Centauri. For the intermediate flare,
we find two secondary flare events that may originate in neighbouring loops,
and discuss the line asymmetries observed during this flare in H i, He i, and
Ca ii lines. The high time-resolution in the H alpha line highlights strong
temporal variations in the observed line asymmetries, which re-appear during a
secondary flare event. We also present theoretical modelling with the stellar
atmosphere code PHOENIX to construct flaring chromospheric models.Comment: 19 pages, 22 figures, accepted by A&
Density functional method for nonequilibrium electron transport
We describe an ab initio method for calculating the electronic structure,
electronic transport, and forces acting on the atoms, for atomic scale systems
connected to semi-infinite electrodes and with an applied voltage bias. Our
method is based on the density functional theory (DFT) as implemented in the
well tested Siesta approach (which uses non-local norm-conserving
pseudopotentials to describe the effect of the core electrons, and linear
combination of finite-range numerical atomic orbitals to describe the valence
states). We fully deal with the atomistic structure of the whole system,
treating both the contact and the electrodes on the same footing. The effect of
the finite bias (including selfconsistency and the solution of the
electrostatic problem) is taken into account using nonequilibrium Green's
functions. We relate the nonequilibrium Green's function expressions to the
more transparent scheme involving the scattering states. As an illustration,
the method is applied to three systems where we are able to compare our results
to earlier ab initio DFT calculations or experiments, and we point out
differences between this method and existing schemes. The systems considered
are: (1) single atom carbon wires connected to aluminum electrodes with
extended or finite cross section, (2) single atom gold wires, and finally (3)
large carbon nanotube systems with point defects.Comment: 18 pages, 23 figure
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
First Light Measurements of Capella with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory
We present the first X-ray spectrum obtained by the Low Energy Transmission
Grating Spectrometer (LETGS) aboard the Chandra X-ray Observatory. The spectrum
is of Capella and covers a wavelength range of 5-175 A (2.5-0.07 keV). The
measured wavelength resolution, which is in good agreement with ground
calibration, is 0.06 A (FWHM). Although in-flight
calibration of the LETGS is in progress, the high spectral resolution and
unique wavelength coverage of the LETGS are well demonstrated by the results
from Capella, a coronal source rich in spectral emission lines. While the
primary purpose of this letter is to demonstrate the spectroscopic potential of
the LETGS, we also briefly present some preliminary astrophysical results. We
discuss plasma parameters derived from line ratios in narrow spectral bands,
such as the electron density diagnostics of the He-like triplets of carbon,
nitrogen, and oxygen, as well as resonance scattering of the strong Fe XVII
line at 15.014 A.Comment: 4 pages (ApJ letter LaTeX), 2 PostScript figures, accepted for
publication in ApJ Letters, 200
Changes in the red giant and dusty environment of the recurrent nova RS Ophiuchi following the 2006 eruption
We present near-infrared spectroscopy of the recurrent nova RS Ophiuchi (RS Oph) obtained on several occasions after its latest outburst in 2006 February. The 1–5 μm spectra are dominated by the red giant, but the H i, He i and coronal lines present during the eruption are present in all our observations. From the fits of the computed infrared spectral energy distributions to the observed fluxes, we find Teff= 4200 ± 200 K for the red giant. The first overtone CO bands at 2.3 μm, formed in the atmosphere of the red giant, are variable. The spectra clearly exhibit an infrared excess due to dust emission longward of 5 μm; we estimate an effective temperature for the emitting dust shell of 500 K, and find that the dust emission is also variable, being beyond the limit of detection in 2007. Most likely, the secondary star in RS Oph is intrinsically variable
A gene expression signature distinguishes innate response and resistance to proteasome inhibitors in multiple myeloma
Extensive interindividual variation in response to chemotherapy is a major stumbling block in achieving desirable efficacy in the treatment of cancers, including multiple myeloma (MM). In this study, our goal was to develop a gene expression signature that predicts response specific to proteasome inhibitor (PI) treatment in MM. Using a well-characterized panel of human myeloma cell lines (HMCLs) representing the biological and genetic heterogeneity of MM, we created an in vitro chemosensitivity profile in response to treatment with the four PIs bortezomib, carfilzomib, ixazomib and oprozomib as single agents. Gene expression profiling was performed using next-generation high-throughput RNA-sequencing. Applying machine learning-based computational approaches including the supervised ensemble learning methods Random forest and Random survival forest, we identified a 42-gene expression signature that could not only distinguish good and poor PI response in the HMCL panel, but could also be successfully applied to four different clinical data sets on MM patients undergoing PI-based chemotherapy to distinguish between extraordinary (good and poor) outcomes. Our results demonstrate the use of in vitro modeling and machine learning-based approaches to establish predictive biomarkers of response and resistance to drugs that may serve to better direct myeloma patient treatment options
- …
