162 research outputs found

    High fidelity transport of trapped-ion qubits through an X-junction trap array

    Full text link
    We report reliable transport of 9Be+ ions through a 2-D trap array that includes a separate loading/reservoir zone and an "X-junction". During transport the ion's kinetic energy in its local well increases by only a few motional quanta and internal-state coherences are preserved. We also examine two sources of energy gain during transport: a particular radio-frequency (RF) noise heating mechanism and digital sampling noise. Such studies are important to achieve scaling in a trapped-ion quantum information processor.Comment: 4 pages, 3 figures Updated to reduce manuscript to four pages. Some non-essential information was removed, including some waveform information and more detailed information on the tra

    Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    Get PDF
    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m^{83m}Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U

    A photonic quantum information interface

    Full text link
    Quantum communication is the art of transferring quantum states, or quantum bits of information (qubits), from one place to another. On the fundamental side, this allows one to distribute entanglement and demonstrate quantum nonlocality over significant distances. On the more applied side, quantum cryptography offers, for the first time in human history, a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecom optical fibres makes the wavelengths of 1310 and 1550 nm particulary suitable for distribution over long distances. However, to store and process quantum information, qubits could be encoded into alkaline atoms that absorb and emit at around 800 nm wavelength. Hence, future quantum information networks made of telecom channels and alkaline memories will demand interfaces able to achieve qubit transfers between these useful wavelengths while preserving quantum coherence and entanglement. Here we report on a qubit transfer between photons at 1310 and 710 nm via a nonlinear up-conversion process with a success probability greater than 5%. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1550 nm, initially entangled with the 1310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98%.Comment: 7 pages, 3 figure

    Coherent frequency-down-conversion interface for quantum repeaters

    Full text link
    We report a coherence-preserving photon frequency down-conversion experiment based on difference-frequency generation in a periodically poled Lithium niobate waveguide, at the single-photon level. The coherence of the process has been demonstrated by measuring the phase coherence of pseudo single-photon time-bin qubits after frequency conversion with an interference visibility of > 96 %. This interface could be of interest for quantum repeater based hybrid networks.Comment: 6 pages, 3 figure

    Dead layer on silicon p-i-n diode charged-particle detectors

    Full text link
    Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon \textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.Comment: Manuscript submitted to NIM

    Precise Measurement of the Pi+ -> Pi0 e+ nu Branching Ratio

    Full text link
    Using a large acceptance calorimeter and a stopped pion beam we have made a precise measurement of the rare Pi+ -> Pi0 e+ Nu,(pi_beta) decay branching ratio. We have evaluated the branching ratio by normalizing the number of observed pi_beta decays to the number of observed Pi+ -> e+ Nu, (pi_{e2}) decays. We find the value of Gamma(Pi+ -> Pi0 e+ Nu)/Gamma(total) = [1.036 +/- 0.004(stat.) +/- 0.004(syst.) +/- 0.003(pi_{e2})] x 10^{-8}$, where the first uncertainty is statistical, the second systematic, and the third is the pi_{e2} branching ratio uncertainty. Our result agrees well with the Standard Model prediction.Comment: 4 pages, 5 figures, 1 table, revtex4; changed content; updated analysi

    Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments

    Full text link
    The recently developed technique of Cyclotron Radiation Emission Spectroscopy (CRES) uses frequency information from the cyclotron motion of an electron in a magnetic bottle to infer its kinetic energy. Here we derive the expected radio frequency signal from an electron in a waveguide CRES apparatus from first principles. We demonstrate that the frequency-domain signal is rich in information about the electron's kinematic parameters, and extract a set of measurables that in a suitably designed system are sufficient for disentangling the electron's kinetic energy from the rest of its kinematic features. This lays the groundwork for high-resolution energy measurements in future CRES experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure
    corecore