1,942 research outputs found

    Quantum coherence in ion channels: Resonances, Transport and Verification

    Full text link
    Recently it was demonstrated that long-lived quantum coherence exists during excitation energy transport in photosynthesis. It is a valid question up to which length, time and mass scales quantum coherence may extend, how to one may detect this coherence and what if any role it plays for the dynamics of the system. Here we suggest that the selectivity filter of ion channels may exhibit quantum coherence which might be relevant for the process of ion selectivity and conduction. We show that quantum resonances could provide an alternative approch to ultrafast 2D spectroscopy to probe these quantum coherences. We demonstrate that the emergence of resonances in the conduction of ion channels that are modulated periodicallly by time dependent external electric fields can serve as signitures of quantum coherence in such a system. Assessments of experimental feasibility and specific paths towards the experimental realization of such experiments are presented. We show that this may be probed by direct 2-D spectroscopy or through the emergence of resonances in the conduction of ion channels that are modulated periodically by time dependent external electric fields.Comment: Under review for New Jorunal of Physic

    Superpositions of the Orbital Angular Momentum for Applications in Quantum Experiments

    Get PDF
    Two different experimental techniques for preparation and analyzing superpositions of the Gaussian and Laguerre-Gassian modes are presented. This is done exploiting an interferometric method on the one hand and using computer generated holograms on the other hand. It is shown that by shifting the hologram with respect to an incoming Gaussian beam different superpositions of the Gaussian and the Laguerre-Gaussian beam can be produced. An analytical expression between the relative phase and the amplitudes of the modes and the displacement of the hologram is given. The application of such orbital angular momenta superpositions in quantum experiments such as quantum cryptography is discussed.Comment: 18 pages, 4 figures. to appear in Journal of Optics

    Angular Schmidt Modes in Spontaneous Parametric Down-Conversion

    Full text link
    We report a proof-of-principle experiment demonstrating that appropriately chosen set of Hermite-Gaussian modes constitutes a Schmidt decomposition for transverse momentum states of biphotons generated in the process of spontaneous parametric down conversion. We experimentally realize projective measurements in Schmidt basis and observe correlations between appropriate pairs of modes. We perform tomographical state reconstruction in the Schmidt basis, by direct measurement of single-photon density matrix eigenvalues.Comment: 5 pages, 4 figure

    Experimental Quantum Cryptography with Qutrits

    Full text link
    We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal index l +1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to the manuscrip

    Vibration-enhanced quantum transport

    Full text link
    In this paper, we study the role of collective vibrational motion in the phenomenon of electronic energy transfer (EET) along a chain of coupled electronic dipoles with varying excitation frequencies. Previous experimental work on EET in conjugated polymer samples has suggested that the common structural framework of the macromolecule introduces correlations in the energy gap fluctuations which cause coherent EET. Inspired by these results, we present a simple model in which a driven nanomechanical resonator mode modulates the excitation energy of coupled quantum dots and find that this can indeed lead to an enhancement in the transport of excitations across the quantum network. Disorder of the on-site energies is a key requirement for this to occur. We also show that in this solid state system phase information is partially retained in the transfer process, as experimentally demonstrated in conjugated polymer samples. Consequently, this mechanism of vibration enhanced quantum transport might find applications in quantum information transfer of qubit states or entanglement.Comment: 7 pages, 6 figures, new material, included references, final published versio

    Can quantum fractal fluctuations be observed in an atom-optics kicked rotor experiment?

    Full text link
    We investigate the parametric fluctuations in the quantum survival probability of an open version of the delta-kicked rotor model in the deep quantum regime. Spectral arguments [Guarneri I and Terraneo M 2001 Phys. Rev. E vol. 65 015203(R)] predict the existence of parametric fractal fluctuations owing to the strong dynamical localisation of the eigenstates of the kicked rotor. We discuss the possibility of observing such dynamically-induced fractality in the quantum survival probability as a function of the kicking period for the atom-optics realisation of the kicked rotor. The influence of the atoms' initial momentum distribution is studied as well as the dependence of the expected fractal dimension on finite-size effects of the experiment, such as finite detection windows and short measurement times. Our results show that clear signatures of fractality could be observed in experiments with cold atoms subjected to periodically flashed optical lattices, which offer an excellent control on interaction times and the initial atomic ensemble.Comment: 18 pp, 7 figs., 1 tabl

    Quantized Rotation of Atoms From Photons with Orbital Angular Momentum

    Get PDF
    We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of hbar, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein condensate of sodium atoms. We show that the process is coherent by creating superpositions of different vortex states, where the relative phase between the states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2 by transferring to each atom the orbital angular momentum of two photons.Comment: New version, 4 pages and 3 figures, accepted for publication in Physical Review Letter

    Probing quantum coherence in qubit arrays

    Get PDF
    We discuss how the observation of population localization effects in periodically driven systems can be used to quantify the presence of quantum coherence in interacting qubit arrays. Essential for our proposal is the fact that these localization effects persist beyond tight-binding Hamiltonian models. This result is of special practical relevance in those situations where direct system probing using tomographic schemes becomes infeasible beyond a very small number of qubits. As a proof of principle, we study analytically a Hamiltonian system consisting of a chain of superconducting flux qubits under the effect of a periodic driving. We provide extensive numerical support of our results in the simple case of a two-qubits chain. For this system we also study the robustness of the scheme against different types of noise and disorder. We show that localization effects underpinned by quantum coherent interactions should be observable within realistic parameter regimes in chains with a larger number o

    Polarization control of single photon quantum orbital angular momentum states

    Full text link
    The orbital angular momentum of photons, being defined in an infinitely dimensional discrete Hilbert space, offers a promising resource for high-dimensional quantum information protocols in quantum optics. The biggest obstacle to its wider use is presently represented by the limited set of tools available for its control and manipulation. Here, we introduce and test experimentally a series of simple optical schemes for the coherent transfer of quantum information from the polarization to the orbital angular momentum of single photons and vice versa. All our schemes exploit a newly developed optical device, the so-called "q-plate", which enables the manipulation of the photon orbital angular momentum driven by the polarization degree of freedom. By stacking several q-plates in a suitable sequence, one can also access to higher-order angular momentum subspaces. In particular, we demonstrate the control of the orbital angular momentum mm degree of freedom within the subspaces of m=2|m|=2 \hbar and m=4|m|=4\hbar per photon. Our experiments prove that these schemes are reliable, efficient and have a high fidelity.Comment: 9 pages, 8 figure

    Photon Orbital Angular Momentum and Mass in a Plasma Vortex

    Full text link
    We analyse the Anderson-Higgs mechanism of photon mass acquisition in a plasma and study the contribution to the mass from the orbital angular momentum acquired by a beam of photons when it crosses a spatially structured charge distribution. To this end we apply Proca-Maxwell equations in a static plasma with a particular spatial distribution of free charges, notably a plasma vortex, that is able to impose orbital angular momentum (OAM) onto light. In addition to the mass acquisition of the conventional Anderson-Higgs mechanism, we find that the photon acquires an additional mass from the OAM and that this mass reduces the Proca photon mass.Comment: Four pages, no figures. Error corrections, improved notation, refined derivation
    corecore