1,942 research outputs found
Quantum coherence in ion channels: Resonances, Transport and Verification
Recently it was demonstrated that long-lived quantum coherence exists during
excitation energy transport in photosynthesis. It is a valid question up to
which length, time and mass scales quantum coherence may extend, how to one may
detect this coherence and what if any role it plays for the dynamics of the
system. Here we suggest that the selectivity filter of ion channels may exhibit
quantum coherence which might be relevant for the process of ion selectivity
and conduction. We show that quantum resonances could provide an alternative
approch to ultrafast 2D spectroscopy to probe these quantum coherences. We
demonstrate that the emergence of resonances in the conduction of ion channels
that are modulated periodicallly by time dependent external electric fields can
serve as signitures of quantum coherence in such a system. Assessments of
experimental feasibility and specific paths towards the experimental
realization of such experiments are presented. We show that this may be probed
by direct 2-D spectroscopy or through the emergence of resonances in the
conduction of ion channels that are modulated periodically by time dependent
external electric fields.Comment: Under review for New Jorunal of Physic
Superpositions of the Orbital Angular Momentum for Applications in Quantum Experiments
Two different experimental techniques for preparation and analyzing
superpositions of the Gaussian and Laguerre-Gassian modes are presented. This
is done exploiting an interferometric method on the one hand and using computer
generated holograms on the other hand. It is shown that by shifting the
hologram with respect to an incoming Gaussian beam different superpositions of
the Gaussian and the Laguerre-Gaussian beam can be produced. An analytical
expression between the relative phase and the amplitudes of the modes and the
displacement of the hologram is given. The application of such orbital angular
momenta superpositions in quantum experiments such as quantum cryptography is
discussed.Comment: 18 pages, 4 figures. to appear in Journal of Optics
Angular Schmidt Modes in Spontaneous Parametric Down-Conversion
We report a proof-of-principle experiment demonstrating that appropriately
chosen set of Hermite-Gaussian modes constitutes a Schmidt decomposition for
transverse momentum states of biphotons generated in the process of spontaneous
parametric down conversion. We experimentally realize projective measurements
in Schmidt basis and observe correlations between appropriate pairs of modes.
We perform tomographical state reconstruction in the Schmidt basis, by direct
measurement of single-photon density matrix eigenvalues.Comment: 5 pages, 4 figure
Experimental Quantum Cryptography with Qutrits
We produce two identical keys using, for the first time, entangled trinary
quantum systems (qutrits) for quantum key distribution. The advantage of
qutrits over the normally used binary quantum systems is an increased coding
density and a higher security margin. The qutrits are encoded into the orbital
angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal
index l +1, 0 and -1, respectively. The orbital angular momentum is controlled
with phase holograms. In an Ekert-type protocol the violation of a
three-dimensional Bell inequality verifies the security of the generated keys.
A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to
the manuscrip
Vibration-enhanced quantum transport
In this paper, we study the role of collective vibrational motion in the
phenomenon of electronic energy transfer (EET) along a chain of coupled
electronic dipoles with varying excitation frequencies. Previous experimental
work on EET in conjugated polymer samples has suggested that the common
structural framework of the macromolecule introduces correlations in the energy
gap fluctuations which cause coherent EET. Inspired by these results, we
present a simple model in which a driven nanomechanical resonator mode
modulates the excitation energy of coupled quantum dots and find that this can
indeed lead to an enhancement in the transport of excitations across the
quantum network. Disorder of the on-site energies is a key requirement for this
to occur. We also show that in this solid state system phase information is
partially retained in the transfer process, as experimentally demonstrated in
conjugated polymer samples. Consequently, this mechanism of vibration enhanced
quantum transport might find applications in quantum information transfer of
qubit states or entanglement.Comment: 7 pages, 6 figures, new material, included references, final
published versio
Can quantum fractal fluctuations be observed in an atom-optics kicked rotor experiment?
We investigate the parametric fluctuations in the quantum survival
probability of an open version of the delta-kicked rotor model in the deep
quantum regime. Spectral arguments [Guarneri I and Terraneo M 2001 Phys. Rev. E
vol. 65 015203(R)] predict the existence of parametric fractal fluctuations
owing to the strong dynamical localisation of the eigenstates of the kicked
rotor. We discuss the possibility of observing such dynamically-induced
fractality in the quantum survival probability as a function of the kicking
period for the atom-optics realisation of the kicked rotor. The influence of
the atoms' initial momentum distribution is studied as well as the dependence
of the expected fractal dimension on finite-size effects of the experiment,
such as finite detection windows and short measurement times. Our results show
that clear signatures of fractality could be observed in experiments with cold
atoms subjected to periodically flashed optical lattices, which offer an
excellent control on interaction times and the initial atomic ensemble.Comment: 18 pp, 7 figs., 1 tabl
Quantized Rotation of Atoms From Photons with Orbital Angular Momentum
We demonstrate the coherent transfer of the orbital angular momentum of a
photon to an atom in quantized units of hbar, using a 2-photon stimulated Raman
process with Laguerre-Gaussian beams to generate an atomic vortex state in a
Bose-Einstein condensate of sodium atoms. We show that the process is coherent
by creating superpositions of different vortex states, where the relative phase
between the states is determined by the relative phases of the optical fields.
Furthermore, we create vortices of charge 2 by transferring to each atom the
orbital angular momentum of two photons.Comment: New version, 4 pages and 3 figures, accepted for publication in
Physical Review Letter
Probing quantum coherence in qubit arrays
We discuss how the observation of population localization effects in
periodically driven systems can be used to quantify the presence of quantum
coherence in interacting qubit arrays. Essential for our proposal is the fact
that these localization effects persist beyond tight-binding Hamiltonian
models. This result is of special practical relevance in those situations where
direct system probing using tomographic schemes becomes infeasible beyond a
very small number of qubits. As a proof of principle, we study analytically a
Hamiltonian system consisting of a chain of superconducting flux qubits under
the effect of a periodic driving. We provide extensive numerical support of our
results in the simple case of a two-qubits chain. For this system we also study
the robustness of the scheme against different types of noise and disorder. We
show that localization effects underpinned by quantum coherent interactions
should be observable within realistic parameter regimes in chains with a larger
number o
Polarization control of single photon quantum orbital angular momentum states
The orbital angular momentum of photons, being defined in an infinitely
dimensional discrete Hilbert space, offers a promising resource for
high-dimensional quantum information protocols in quantum optics. The biggest
obstacle to its wider use is presently represented by the limited set of tools
available for its control and manipulation. Here, we introduce and test
experimentally a series of simple optical schemes for the coherent transfer of
quantum information from the polarization to the orbital angular momentum of
single photons and vice versa. All our schemes exploit a newly developed
optical device, the so-called "q-plate", which enables the manipulation of the
photon orbital angular momentum driven by the polarization degree of freedom.
By stacking several q-plates in a suitable sequence, one can also access to
higher-order angular momentum subspaces. In particular, we demonstrate the
control of the orbital angular momentum degree of freedom within the
subspaces of and per photon. Our experiments prove
that these schemes are reliable, efficient and have a high fidelity.Comment: 9 pages, 8 figure
Photon Orbital Angular Momentum and Mass in a Plasma Vortex
We analyse the Anderson-Higgs mechanism of photon mass acquisition in a
plasma and study the contribution to the mass from the orbital angular momentum
acquired by a beam of photons when it crosses a spatially structured charge
distribution. To this end we apply Proca-Maxwell equations in a static plasma
with a particular spatial distribution of free charges, notably a plasma
vortex, that is able to impose orbital angular momentum (OAM) onto light. In
addition to the mass acquisition of the conventional Anderson-Higgs mechanism,
we find that the photon acquires an additional mass from the OAM and that this
mass reduces the Proca photon mass.Comment: Four pages, no figures. Error corrections, improved notation, refined
derivation
- …
